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Abstract

XAFS study of the pressure induced B1—B2 phase transition

by Shelly D. Kelly

Chairperson of Supervisory Committee
Professor Robert Ingalls
Department of Physics

Pressure dependent x-ray absorption fine structure (XAFS) measurements on RbCl,
AgCl and AgBr are presented in this thesis. Measurements on RbCl are presented
at pressures spanning its structural B1—+B2 phase transition including three mea-
surements at the transition region between these phases. Using these XAFS data,
I provide direct evidence of the martensitic-like phase transition mechanism. The
local structure of RbCl at the transition is shown to be a mixture of the B1 and B2
phases. The amount of disorder in the structure at the transition is shown to be no
greater than that found in the single phase region also an excess pressure required
to initiate the phase transition was observed. AgCl and AgBr are said to undergo a
B1—-KOH—TII—B2 phase transition. Measurements on AgCl and AgBr are present
at pressures spanning the structural B -KOH—TII and B1-KOH transition, re-
spectively. Using these XAFS data, I have determined the atomic positions for the
KOH and TII high pressure phases which was previously unknown. These local struc-
tures are found to be consistant with a topological transition mechanism where each
phase is related to a KOH-type structure. The pressure dependence of the KOH and
TlI-type phases indicates that these phases are stable within a large pressure region,
and that the transition mechanism from the B1—B2 phase is not due to a gradual
distortion of these two intermediate high pressure phases. Further evidence for a
martensitic-like transition between the BI—+-KOH phases was found for AgBr, where
for one measurement at the transition region the local structure was determined to

be a mixture of the Bl and KOH-type phases. Although experiemental difficulties in



obtaining truely hydrostatic samples at these high pressure leads this evidence to be

inconclusive in terms of its cause.
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Chapter 1

INTRODUCTION

The goal of this thesis is to contribute to the study of the mechanism for the
B1—B2 pressure-induced phase transitions. The Bl-phase has the NaCl-type struc-
ture which is the crystal structure of many alkali-halides at ambient pressure and
room temperature. The B2-phase has the CsCl-type structure which is the crystal
structure of many of the same alkali-halides at higher pressures and temperatures.
Table 1.1 lists several of these alkali-halides and their transition pressures at room
temperature. Therefore the B1—B2 pressure-induced phase transition applies to a
wide variety of materials. Several neutron and x-ray-diffraction studies have inves-
tigated the mechanism of the pressure-induced B1—B2 phase transition[1-5], from
which two distinct displacive mechanisms have been proposed. In the first, the crys-
tal structure at the transition consists of a mixture of Bl and B2 phases[2]. In the
second, the crystal structure at the transition consists of an intermediate structure
which is a distortion of the Bl-phase[1].

| Substance Pressure (GPa) |

NaCl [6] 18
KF [7] 1.7
KCl1 [6] 2.1
KBr [§] 1.8
KI [8] 1.8
RbF [7] 3.1
RbCl [6] 0.6
RbBr [§] 0.5
RbI [8] 0.4

Table 1.1: List of transition pressure for several alkali-halides



To explain the mixture of Bl and B2 phases at the transition Onodera et at.[2]
proposed a displacive mechanism, with many martensitic-like properties, for the tran-
sition in RbCl. In martensitic transitions, excess pressure is required to nucleate the
B2-phase. This property of martensitic transitions was confirmed in a single-crystal
neutron-diffraction study in which an excess pressure of 0.16 GPa was needed to start
the transition. Another property of the phase transition[2] is diffraction peaks that
occurred at a constant angle across the transition. This is expected in martensitic
transitions, where the nucleation of the parent phase is followed by a wave of shearing
and deforming planes that transforms the Bl-structure to the B2-structure. The wave
is stopped by grain boundaries or imperfections in the crystal structure. At this point
there is a mixture of both structures, which is stable until the pressure is raised and
more of the B2-structure nucleates. This transition is depicted in Fig. 1.1. A stable
coexistence of both phases was reported at 0.49 GPa[2]. References [2-5] showed that
the diffraction lines at the transition became very broad, indicating a breakdown of
the original Bl-crystal into many grains. Again this is expected in a martensitic-like

transition and makes the interpretation of diffraction peaks difficult.

B2-phase
nucleation

\

&

—>

Bl-phase
Bl-phase

Figure 1.1: A cartoon of a martensitic-like transition. Excess pressure is required to nucleate the
B2-phase which is followed by a shearing and deformation of planes transforming the Bl-phase to
the B2-phase. The wave is stopped by grain boundaries and imperfections in the crystal lattice. The
crystal is now stable with some of both phases present. More pressure must be applied to nucleate
more of the B2-phase.

Kusaba et at. [1] has proposed a different displacive mechanism for the B1—B2
phase transition based on energy-dispersive x-ray-diffraction spectroscopy of AgCI.



This mechanism involves the distortion of the original Bl-phase to form two inter-
mediate phases, the KOH-type structure and the Tll-type structure. They suggest
that this transition mechanism is a continuous deformation of the Bl-phase crystal
planes. A diagram of this transition mechanism is shown in Fig 1.2. The crystal
structure of the two intermediate phases has not been completely determined since
the atomic positions within the unit cell are unknown. In the proceeding figure, the
atoms have been placed in the positions found for actual TII and KOH which has
not been confirmed. This is because it is difficult to determine the absolute inten-
sity of the energy-dispersive diffraction peaks due to the variation of the intensity
with wavelength of the x-ray source. This creates a unique opportunity for x-ray ab-
sorption fine structure (XAFS) spectroscopy which can determine the local structure
given the space group and unit cell dimensions from the x-ray diffraction study[1].
Although his work is based on AgCl, the author generalized his work to all B1—B2
type transitions. Therefore this model is also considered for our analysis of RbCl as
well as AgCl and AgBr.

Pl SN

Figure 1.2: Cartoon of the proposed topological phase transition where there is a “topological”
relationship between each of the phases in terms of the KOH-type unit cell. Left: The KOH-type
unit cell for the Bl-structure is shown as the outlined rectangle where 8; = 90°. Middle Left: High
pressure phase I, KOH-type unit cell where 8, = 101°. Middle Right: High pressure phase II,
KOH-type unit cell for TlI-type structure is shown by the tilted rectangle where 83 = 109°. Right:
The KOH-type unit cell for the B2-structure is shown as the outlined rectangle where 84 = 125.27°.
The continuous deformation of the planes resulting in larger 8 angles is an important feature of the
transition mechanism.

XAFS probes the radial distribution of atoms surrounding a specific species.|9]
In this thesis three systems are studied. They are the local structure about Rb and
Ag atoms in RbCl, and AgCl and AgBr, respectively. XAFS measures only short-



range order, therefore, the structure surrounding the particular atoms at the phase
transition can be determined where diffraction lines are broad due to broken grains
in the crystal structure.

For RbCl I fit the data with the known crystal structure well below and above
the transition and characterize the pressure dependence of the XAFS parameters so
that I can construct a model for the transition based on a simple mixture of the
two phases. This model is used to test for the martensitic-like transition proposed
by Onodera et at. [2] as discussed above. As stated, I also explore the possibility of
an intermediate structure at the transition by constructing a model for a distorted
Bl-structure based on the KOH-type structure proposed by Kusaba et at. [1] for the
B1—B2 phase transition.

For AgCl and AgBr I fit the data with the known crystal structure well below the
transition. As I discuss in more detail in Chapter 6, the B2-phase is only found a high
temperatures therefore I do not have this other end point as my data was taken only
at 150K. Again like the RbCl analysis I model data corresponding to the transition
region as a mixture of B1 and B2 phases and as the distorted Bl-structure based on
the KOH-type and TlI-type structures.

Based on my analysis of the crystal structure at the transition region of the RbCl,
AgCl and AgBr systems I plan to confirm a particular transition mechanism for each
system. If the martensitic-like transition is found, I will be able to (1) confirm the
excess pressure required to start the transition, (2) determine the pressure range in
which the transition exists and, (3) characterize the distortion of the B1 and B2 phases
during the transition. If the distorted Bl-structure is found to have a KOH-type and
TlI-type structures, I will be able to (1) determine the position of the atom within the
unit cell, and (2) characterize the pressure dependence of the deformation process.
Since there is some indication that RbCl will have the martensitic-like transition and
AgCl and AgBr will have the distorted Bl-structure transition. The most interesting
possibility will be if both transitions can be related, since both have the Bl-structure
at ambient pressure and the B2-structure at high pressure (and high temperature for
AgCl). It seems reasonable to assume that the transition mechanism would be similar
or at least related in some way. This is the type of argument presented in Ref. [1]
leading to the claim that the AgCl transition mechanism can be used to understand
all B1—B2 phase transitions.



Chapter 2

X-RAY ABSORPTION FINE STRUCTURE: METHOD OF
ANALYSIS

2.1 X-ray Absorption Fine Structure (XAFS)

There are three fundamental interactions of photons with matter[10]. These are the
photoelectric effect, Compton scattering and pair production. The characteristic en-
ergy for XAFS, due to the photoelectric process, ranges from ~ 3 to 40 keV which
is in the x-ray region[11]. In this energy regime pair production is very energetically
forbidden since it requires a photon energy of at least two times 511 keV to create
both the electron and positron. The probability for electron scattering is also very
small since the x-ray wavelength is much larger than the effective electron cross sec-
tion. Scattering that does occur only adds a background whose energy dependence is
smooth and easily subtracted. XAFS and the photoelectric process involves the total
absorption of an x-ray by an atom. There is a dramatic increase in the probability for
the absorption of an x-ray whose energy is equal to the binding energy of an electron
compared to the absorption probability for an x-ray with slightly less energy. This
increase in the absorption probability is referred to as an absorption edge. Every
atomic electron has an associated absorption edge. To distinguish between the edges
due to the excitation of an electron from the most tightly bound n=1 shell and the
next most tightly bound n=2 shell, they are called the K-edge and L-edge, respec-
tively. Therefore every atom with at least three electrons has a K- and L-edge. These
are the most commonly studied XAFS edges. The K-edge for copper is shown in
Fig. 2.1a. XAFS is the oscillatory part of the absorption coefficient shown within the
box in Fig. 2.1a and alone in Fig. 2.1b.

X-rays that are absorbed with energy greater than the binding energy of the
electron may result in a photoelectron with some kinetic energy. If the kinetic energy
of the electron is large compared to its interaction energy with the neighboring atoms,
the photoelectron is freed from the absorbing atom to the conduction band. Since
this interaction energy is about 3 eV, the x-ray energy needs to be at least 15 eV
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Figure 2.1: Left panel: The absorption coefficient for copper. The K-edge of copper is at 8987 eV
and corresponds to the excitation of a n=1 shell electron. X-ray absorption fine structure, XAFS,
is shown above the absorption edge in the dashed box. Right panel: Isolated XAFS signal from
the boxed area in the left panel. Here the energy scale has been changed to the wavenumber of the
photoelectron. The edge energy, 8987 eV, corresponds to a wave number of zero.

above the edge energy to completely free the electron. The distinction between a
photoelectron with energy greater than or less than 15 eV is important in determining
the main source of XAFS. For this reason XAFS has been historically split into two
regions. The first contains the fine structure from the absorption edge to about 50
eV above the edge energy and is referred to as x-ray absorption near edge structure
(XANES). The second region contains the fine structure from 50 eV to about 1000 eV
above the edge energy and is referred to as extended x-ray absorption fine structure
(EXAFS). Recently the theoretical calculations used to predict EXAFS have improved
and much of the XANES has been incorporated into EXAFS making the distinction
unnecessary[12]. Here I use the latter convention, referring to the x-ray absorption

fine structure from approximately 20 eV to several hundred eV above the edge energy
as XAFS.

2.1.1 Basic Principles Involved in XAFS

XAFS and its relationship to the local structure of a material can be understood
intuitively. The ideas of this heuristic approach have been described previously in
Refs. [13] and [14]. Since theses ideas are fundamental to the understanding of XAFS,
they are presented again here. Detailed derivations of XAFS can be found in Refs. [15]
and [16].

XAFS is due to the photoelectric effect which is described quantum mechanically



as the probability for the absorption of an x-ray by an atom. This probability, as
contained in Fermi’s Golden Rule, is proportional to the square of the matrix element
between the initial and final states. The initial state consists of the electron in an
atomic core. The final state consists of a core hole and a photoelectron in the conduc-
tion band, free from the absorbing atom. Since the initial state is well localized at the
absorbing atom it is only necessary to determine the final state of the photoelectron
at the absorbing atom.

Next, consider the free photoelectron as a wave propagating away from the ab-

sorbing atom with a wavelength given by the DeBroglie relation

A=-— (2.1)

p
where h is Plank’s constant and p is the momentum of the photoelectron. This
momentum is simply related to the photoelectron’s kinetic energy and is equal to the
difference between the x-ray energy and the electron binding energy and is written as

2
P by E,. (2.2)

2m
Here m is the mass of the photoelectron, Ej is the binding energy of the electron and
hv is the x-ray energy.

The interaction between the free photoelectron and the neighboring atoms can be
treated as a perturbation. As shown in Fig. 2.2 the photoelectron propagates away
form the absorbing atom and scatters off of the neighboring atoms. The interference
between the outgoing and scattered part of the photoelectron at the absorbing atom
modifies the photoelectron. This interference changes the probability for the absorp-
tion of an x-ray and is responsible for XAFS. The path of the photoelectron, to the
neighboring atoms and then back to the absorbing atom, as well as the wavelength of
the photoelectron determines the phase of the interference. The amplitude is deter-
mined, in part, by the type of neighboring atoms since they determine how strongly
the photoelectron will be scattered.

In an XAFS experiment the energy of the incident x-ray is increased from approx-
imately 200 eV below to 1000 eV above the absorption edge energy. This changes
the wavelength of the photoelectron and results in the oscillations in the measured
absorption coefficient. A maximum (minimum) occurs when the wavelength of the
photoelectron, determined by the x-ray energy, and the path of the photoelectron



Figure 2.2: The central circle represents the x-ray absorbing atom. The photoelectron propagates
away from the absorbing atom with a wavelength given by the DeBroglie relation. Crests of this
wave are represented by the solid lines. The photoelectron may scatter from the neighboring atom(s).
The crests of the scattered wave are represented by the dashed lines. A maximum (minimum) in the
absorption probability for the x-ray occurs when the wavelength of the photoelectron, determined by
the x-ray energy, and the path of the photoelectron which is the distance to and from the neighboring
atoms, corresponds to constructive (destructive) interference between the photoelectron waves at the
absorbing atom.

which is the distance to and from the neighboring atoms, corresponds to constructive
(destructive) interference between the outgoing and scattered photoelectron waves at
the absorbing atom. An example of theses oscillations in the absorption coefficient
for the copper K-edge is shown in Fig. 2.1b.

Several other factors have helped XAFS become a powerful probe of local atomic
structure. The sum rule for the interference of waves implies that the total contribu-
tion from all single scattering events of the photoelectron is equivalent to the sum of
the individual contributions. A Fourier transform of the XAFS signal separates the
contrition form each group of scattering atoms according to their radial distance. This
allows information to be separated if a particular shell is isolated from its neighbors
by at least an A. Another fortunate consequence of the photoelectron and core hole
is that their lifetimes are very short compared to atomic vibrations so that XAFS is
an instantaneous “snap shot” of the local structure[13]. This allows thermal as well
as static disorder in many materials to be distinguished.



2.1.2 Understanding the XAFS Equation

The XAFS equation is the basis for the theoretical models and the resulting fit param-
eters used to extract structural information. A physical interpretation of each term
in the XAFS equation is essential to understanding the parameters and constraints
used to fit the theoretical models to the data. First, I present the XAFS equation for
a photoelectron which has scattered from a single atom. This equation is then gener-
alized to account for all single scattering events of the photoelectron and to include
multiple scattering events and non-symmetric disorder.

The XAFS signal, x;(k), for a photoelectron which scatters from a single atom at
r; is written as

2 . —2r;
S(fz (2k) e>® sin(2kr; + §;(k)). (2.3)
T

Xi(k) =

This relation maybe logically separated into three pieces: (1) the photoelectron wave,
—2r;

F;—@ sin(2kr; + 0;(k)); (2) the lifetime of the photoelectron and core hole, e3®; (3)

the passive electron reduction factor, S3. Each part is described in the following

subsections.

The Photoelectron Wave

As discussed in Sec. 2.1.1, XAFS is due to the interference between the original
photoelectron and the scattered part of the photoelectron wave at the absorbing atom.
A cartoon of this process is shown in Fig. 2.2. The outgoing photoelectron wave has
the form e’**/r, where k is the wavenumber of the photoelectron. The scattered wave
has the same form except that the origin of the wave is shifted to the scattering atom
at r;
i (2.0
It — 14
The amplitude of this wave is proportional to the amplitude of the original wave at
r; and to the scattering amplitude F;(k). The scattered wave at the absorbing atom

(ro = 0) becomes

(2.5)
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Here the phase shift 2kr; is due to the photoelectron with wave number k that travels
the distance 2r; to and from the scattering atom. This is called the path of the
photoelectron with a path length of 2r;. If the photoelectron traveled in a constant
potential this would be the only phase shift factor. In fact, the photoelectron travels in
a varying potentials of the absorbing and neighboring atoms. These varying potentials
modify the phase by an additional term [6(k) — (7/2)]. Accounting for these extra

phase factors, the expression for the scattered wave becomes
ei[?kr¢+(5i(k)7(ﬂ'/2)]
(r:)?

The real part of Eq. 2.6 comprises the main components of the XAFS equation (see

Fi(k) (2.6)

Eq. 2.3) for a single scattering path of the photoelectron and is written as:

Eilk) sin(2kr; + 6;(k)). (2.7)

I'iQ

Lifetime of the Photoelectron and Core Hole

Another important term in the XAFS equation is due to the finite lifetime of the
photoelectron and the core hole. Because XAFS is a direct measure of the interfer-
ence between the original photoelectron and the scattered part of the photoelectron
wave, the degradation of the wave due to inelastic scattering destroys its coherence
and therefore the XAFS signal. This is interpreted as the finite lifetime of the pho-
toelectron. The lifetime of the core hole depends on the atomic species and the
photoelectron shell. In general the core hole exists for about 1071% seconds before it
is re-populated. (Tabulated values can be found in Ref. [17].) The net effect of the
finite core hole lifetime and the finite lifetime of the photoelectron is an exponential

decay of the XAFS signal written as

ex® (2.8)

where A(k) is the mean free path of the photoelectron. This term can be interpreted
as the probability for the photoelectron to travel to the scattering atom and back
again while core hole is not filled by another electron.
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The Passive Electron Reduction Factor

The S3 term in the XAFS Eq. 2.3 is usually called the passive electron reduction
factor[18]. Its value is completely determined by the absorbing atom where the passive
electrons include all the electrons except the photoelectron. These electrons were
neglected in my initial consideration of the initial and final states for the probability
of the absorption of an x-ray. If these electrons are completely passive, they do
not react to the absorption of the x-ray, then their contributions to the initial and
final states are identical. The overlap of identical states gives unity which justifies
their omission. In fact, the final state of these passive electrons may differ from
the initial state because after the core electron has been freed from the atom the
remaining passive electrons are pulled further in by the net positive charge of the
nucleus. However, since the core hole life time is only about 10~ !5 seconds the passive
electrons may not have time to fully adjust to the new potential. If the electrons
react the potential of the absorbing atom, it is considered screened, otherwise, it is
unscreened. The net effect of these passive electrons is to attenuate the XAFS signal.
Values for S2, therefore, range from 0.7 to 1.0 where 1.0 represents an fully screened

potential.

Many Single Scattering Paths

A photoelectron can be considered a wave (see Fig. 2.2) which scatters from all the
neighboring atoms. We can think of this as many pieces of the photoelectron scatter-
ing once from the neighboring atoms before the scattered pieces recombine with the
original wave at the absorbing atom. Each piece of the photoelectron travels along a
single scattering path. The XAFS equation for many single scattering paths is simply
the sum of all the single scattering contributions described in detail above. Thus,
the XAFS equation is written as x(k) = ). x;(k) where the sum is over all single
scattering paths of the photoelectron and x;(k) is defined in Eq. 2.3.

It is convenient to consider equivalent single scattering paths since all identical
atoms at the same radial distance from the absorbing atom give identical contributions
to the XAFS signal. Often, I will refer to the equivalent paths by the coordinate shell
or the nearest neighbor number of the neighboring atoms since it is these atoms that
define the photoelectron path. A coordinate shell or the nearest neighbor is defined as
all the atoms with the same average radial distance from the absorbing atom. In this
context, the equivalent single scattering path is understood to be from the absorbing
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atom to one atom in the shell and then back to the absorbing atom. To modify the
summation, the XAFS equation must be multiplied by the number of atoms in the
coordinate shell. The XAFS equation becomes x(k) = ). N;x;(k) where the sum is
over the number of shells and N; is the degeneracy of the shell.

This process introduces some error due to the thermal and static disorder which
accounts for the true radial distance to each atom in the shell. If the disorder within
the shell is assumed to be Gaussian about the average distance, r;, a Debye-Waller
factor type term similar to that used in x-ray diffraction measurements is added to
the XAFS equation and is written as,

e %7, (2.9)

The factor o; is the relative mean square displacement (RMS) between the atoms
pairs which define the path length r;.
The final form of the XAFS equation is

;S2F; 214 2,2
x(k) = Z wef 32K gin (2kr; + 6; (k) (2.10)

kri2
where the sum is over coordinate shells for a specific atom type, N; is the number of
atoms in the shell and r; is the radial distance to the shell.
After a brief description of the generalizations of this XAFS equation to account
for multiple scattering of the photoelectron and non-symmetric disorder of the atoms

within a shell the data analysis method, including the theoretical model of XAFS and
the parameters used to extract the structural information, is presented.

2.1.8 Extras in the XAFS Fquation

Two important additions to the XAFS Eq. 2.10 have been overlooked. They are
the multiple scattering events and the cumulant expansion, the latter accounting for
non-symmetric disorder within a coordinate shell.

Multiple Scattering

A multiple scattering event is one where the photoelectron scatters from more than
one neighbor before it returns to the absorbing atom. As described in Refs. [19] and
[20] the contribution of these events to the XAFS equation can be included without
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changing the basic form of Eq. 2.10. There are two important advances that have aided
in the development of the multiple scattering formalism. First, the use of the plane-
wave approximation to quickly judge the importance of a multiple scattering path so
that only a small fraction of the total are actually calculated. Second, the curved-
wave multiple scattering formalism of Rehr and Albers [21]. Briefly, this formalism
includes a scheme for a separable representation of the propagator which uncouples
the product of scattering matrices as discussed below.

The fundamental idea is that the contribution from each multiple scattering event
can be cast into a form which is equivalent to a single scattering event. This is
accomplished by generalizing the basic elements in the XAFS equation which for

comparison is written again:

NZSQFZ k) _2u 252 .
x(k) = Z #()e X 2K sin(2kr; + 9;(k)) (2.11)

i
and now in terms of single and multiple scattering this equation is written as

NpS2|FL(K)| _2Res o2
x(k)=>" %e A& 2 gin (2kReg + 26,(k) + 6" (k) (2.12)
eff

r

The form of these two equations are very similar although many of the fundamental
ideas have changed. The major changes are: in the sum where ¢ — I, the path length
where 2r; — 2Reg, the scattering amplitude and phase where F;(k) — |Fi(k)| and
i (k) = 26.(k) + ¢ (k) and the relative mean square displacement where 02 — o2.

Each of these changes are described below.

The sum in Eq 2.11 over the ¢ shells for a single scattering path becomes a sum
of equivalent paths, I', in Eq. 2.12. Similarly, the degeneracy, N;, of each shell for
a single scattering contribution becomes the number of equivalent paths, Ny. For a
single scattering event these symbols are the same and often I will refer to them in

the single scattering context.

The path length 2r; used in Eq. 2.11 is the distance the photoelectron travels
to the neighboring atom and then back to the original atom. Therefore, r; simply
represents the radial distance to the neighboring atom. In terms of multiple scattering
2r; — 2Rex where 2R.q is the total path length of the photoelectron. For example if
the photoelectron scatters from two atoms, atom A located at s and atom B located
at g and the absorbing, “central”, atom is located at T then the total path length
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becomes 2Reg = [(Ta — Tc)| + |(Ts — Ta)| + [(Ts — Tc)|- Each term in parenthesis is
called a leg of the scattering path. As required for a single scattering event both 2r;
and 2R.g have the same meaning.

The scattering amplitude, F;(k), of Eq. 2.11 is the amplitude of the part of the
original photoelectron which is scattered from the neighboring atom. In terms of the
multiple scattering this is replaced by an “effective” scattering amplitude, |F, 5 (k)]
which is the product of N — 1 scattering matrices where N is the number of legs
of the path. This “effective” scattering amplitude takes into account the scattering
angle between the incoming and outgoing directions of the photoelectron as well as the
distance to each scatterer and curved wave effects. Each of these matrices are coupled
since the amplitude and direction of the photoelectron scattered from atom A, of our
previous example, determines in part the amplitude and direction of the photoelectron
wave scattered from atom B. The separable representation of this product is one of the
recent advances of the Rehr and Albers formalism which makes the multiple scattering
computationally feasible.! The phase shift, ¢ (k), is the “effective” scattering phase
associated with the product of these complex scattering matrices. 26.(k) is simply
twice the central atom phase shift. Both of these terms, 26.(k) + ¢" (k), were included
in ¢;(k) of the single scattering equation.

The mean square displacement, o2 = ({0 Reg)), accounts for the total variation in
the path.

Including the multiple scattering events in this transparent manor allows these
paths to be easily included in the analysis of the XAFS data. The geometry of these

paths can be determined in a fit to the data giving a direct measure of disorder.

Cumulant Expansion

The cumulant expansion accounts for disorder in the atom’s radial position and comes
about since we are summing over the average path length and multiplying by the
number of equivalent paths. As discussed in the Sec. 2.1.2 the first order correction
is the addition of a Debye-Waller type factor which accounts for Gaussian disorder
about an average radial distance. This correction describes the thermal disorder of

atoms in a symmetric potential and is necessary since the time scale for XAFS goes

!The algorithm FEFF that calculates the theoretical model takes its name from |F6Ff (k)| because
of its central role in the calculation.
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like the core-hole lifetime (approximately 107!° seconds) and the frequency for the
vibration of the atoms is several orders of magnitude smaller, therefore XAFS gives
an instantaneous “snapshot” of the position of all the atoms. Higher order terms in

the cumulant expansion account for non-symmetric disorder.

Since the cumulant expansion is rarely worked out in detail, I will do so here. This
involves taking a thermodynamic average of the XAFS equation, expanding several
terms in a Taylor series, and then applying the definition of the cumulants. The
final corrections to the phase and amplitude of the XAFS equation are derived from
the cumulants and shown at the end of this section in Eq. 2.26. Finally the XAFS

equation is rewritten in Eq. 2.27 to include these terms.

To include all orders of the cumulant expansion the sum about the average atom
position should be replaced by a sum over the a thermodynamic average of the contri-
bution from each atoms average position. The most important term in the thermody-
namic average depends on the radial distance r; to the neighboring atom. Removing
these terms from the XAFS Eq. 2.10 gives

eiriie*hi/)\
<T> . (2.13)
i T

If r; is replaced with Rg+x were Ry is the average position and x is a small displacement

the thermal average becomes

i2kRo b —2Ro/A | ni2kx 2%/
e'2kRog <e e > (2.14)
T

Ro’ 1+ (g;)?
i2kri'

The largest contribution is from the phase term e A Taylor series expansion,

therefore, of the smaller terms is written as:

SN PR O DY (I NI (2.15)
——~[l= | -+ = )X —+ — 4+ — | x°|. .
1+ (%0)2 A Rp A2 RgA  Rg?

Substituting this expansion into Eq. 2.14 noting that the product of x and the expo-

nential can be rewritten in terms of a partial derivative with respect to k, I can take
all but the largest term out of the thermal average. The product of terms and the
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remaining thermal average is given by

ei2kRo o —2Ro/A (2. 2\1d (2 4 3 1\ @7/ e
—— 1= |-+ = | == S+ =+ — | —|(e .
R,> A Ro/2idk  \ X2 Rg) R/ \2i/) dk? T
(2.16)
The last term within the thermal average can be rewritten in terms of the cumulant

expansion. The definition of the cumulants, denoted C,,, as defined in Ref. [22] are

written as

Cot? Cpt™ r?)¢?
exp<01t+ I +...)z1+(r)t+< LA
2! n! 2! n!

(2.17)

where () denotes the n-th moment of the distribution. Taking the logarithm of this
definition and expanding the right side in terms of a power series,

x? x3 x*

log(1 =X——=+=———+4... 2.1

and matching like powers of t gives the first four cumulants:

Ar=C, =
(r= ()% =% -

(r— (1)) = (%) = 3(%) (1) + 2(r)” (2.19)
(r = ()% = 3((r = (1))*)*

1) = 3(2)° — 4 () + 12(2)(r)” — 6(r)’

The first and second cumulants are just the average position and the mean square
displacement, term introduced in the preceding section. Written in terms of this

cumulant expansion our thermal average becomes

<ei2kX>T = exp {i (23)”0”] (2.20)

n=1

where t has been replaced with 2ir. Substituting this expression into equation 2.16,

taking the partial derivatives with respect to k and keeping only the largest terms we
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are left with

i Ar) ,—
e2k(R0+ )28 QRO/)\87202k27%ic3k3+%c4k4 1 —i 1 + i 40’21( . 2;“ . 2;“ . (221)
RO A R() R() )\

The terms in the square brackets are small so we can approximate them as a product

[1 — 2R—A0r] [1 —i G + Ri()) 4021{} [1 — QTAr] (2.22)

The left term is just the Taylor series expansion of (1 + ﬁ—;)*?. The imaginary part,

given by

in the middle term, and the real part in the left most term are small so they can be

approximated by an exponential written as:

4i0?k Ro 2Ar
— 1+—)— ——|. 2.23
R (229
Putting both of these pieces back into Eq. 2.21 gives

ei2k(Ro+Ar)e—2(Ro+Ar)/)\ ) 4 4dio2k RO
- — 202k + ZCO4k*| - — —iC3k® — 1+ ).

R+ Ar)? exp[ o°k" + 3C exp | — iC; R, 1+ )\)
(2.24)

For comparison, the original piece of the XAFS equation which will be replaced by

eirii 6_2”/)‘
? T

Comparing Eq. 2.24 and Eq. 2.25, we find that r; has been replaced by (Ro+Ar) where
Ar is the first order cumulant and the XAFS equation is modified by the addition of
the amplitude term, A’, and a phase term, ¢', given by

Eq. 2.24 is written as

Al — o20°K*+3Cak?

40%k . R (2.26)
T 1+ 0)
Ry A

4
= ——Csk® —
¢ 30

Here the first order correction to the amplitude was introduced previously as the
—20%k?

Debye-Waller factor term e . Including these modifications to the XAF'S equation
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the final form is written as

40%k r;
1+
(2.27)

. 2 - r,L' 2 y
) = 37 NS s meateion i fon, 4 5, — Aot -

2
kI‘i

where r; = Ry; + Ar;. It is important to note that the disorder introduced by the
cumulant expansion is model independent and is therefore applicable to a wide va-
riety of systems and can be included in a path by path basis when the higher order

cumulants are found necessary to describe the XAFS data.
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2.2 Data Analysis

In an XAFS experiment the incident and transmitted x-ray intensities are measured
as a function of energy. The intensity of the x-rays after passing through a sample of
thickness x is given by

I = [pe HEX (2.28)

where Ij is the incident intensity, E is the incident energy of the x-rays, and p(E)-x
is the energy dependent absorption coefficient times the sample thickness x. The
product of p(E)-x is obtained experimentally by taking the logarithm of the ratio of
Iy to I. u(E)-x data for copper is shown in Fig. 2.1a.

The next step is to isolate the XAFS signal in p(E)-x and perform a Fourier
transform to R-space. The theoretical model is then fitted to the data and local
structure parameters are extracted. Each of these steps is discussed in more detail in

the following sections.

2.2.1 Isolation of the XAFS Signal

An example of the isolated XAFS signal, x(k), is shown in Fig. 2.1b. x(E) is defined
as the normalized oscillatory part of the x-ray absorption coefficient which is written
as

_ 1(E)x — po(E)x
x(B) = po(E)x

(2.29)

where p(E)-x is the measured data shown in Fig. 2.1a and po(E)-x is the absorption
coefficient times the sample thickness which would result if the scattered parts of the
photoelectron from the surrounding atoms were turned off. The data, u(E)-x, contains
some low frequency structure due to scattering of the photoelectron from the changing
potential of the surrounding atoms, therefore 1o(E) is not the absorption coefficient
for an isolated atom and it is difficult to determine either from first principles or
experimentally. In this thesis AUTOBK is used to generate po(E)-x. This procedure is
outlined in Sec. 2.2.1. Examples of AUTOBK input files can be found in the AUTOBK
documentation [23].

X(E) is usually expressed as a function of photoelectron wave number k. As



20

discussed in Sec. 2.1.1, the wave number is given by:

k = /2m(E — Ey)/h? (2.30)

where Ej is the Fermi energy chosen to be the value at approximately the middle of
the edge step (see Sec. 2.1.1) as shown in Fig. 2.3.

Determination of uo(E)-x

The actual form of pg(E)-x is unknown but this is not a serious problem for XAFS
as long as the contribution to x(E) from the neighboring atoms contains frequencies
which are much larger than that of the background, po(E)-x.

Based on information theory, AUTOBK, calculates an approximation to pug(E)-x
which will not interfere with the XAFS data. The general principle is based on the
Fourier transform conjugate variables & and 2R. The signal in R-space of the Fourier
transformed x (k) corresponds to a frequency in the k-space x(k). This implies that
the first neighbor distance sets a low frequency limit for the k-space data. All frequen-
cies less than this limit are not part of the data and are therefore subtracted. The
minimum frequency of the relevant data therefore determines a maximum frequency
for the background. The background frequencies correspond to peaks at R values
that are less than the first nearest neighbor distance. AUTOBK uses this maximum
background frequency to calculate uo(E)-x that minimizes the signal in the Fourier
transform of x(k) in the region from zero to Ryg where Ry is typically set to half
the first neighbor distance.

One important contribution to signal at low R has been overlooked. Some “leak-
age” of the first neighbor signal can extend into the low R range because of the
finite data range. The best method for keeping this part of the spectrum is to in-
clude a theoretical calculation of x(k) in the AUTOBK procedure. Then AUTOBK will
minimize the difference between the data and the theoretical calculation in R-space
between zero and Rykg. Using this approach p(E)-x determined by AUTOBK con-
tains all the contributions to the data that are not due to the scattered photoelectron
from the surrounding atom. This includes the energy response of the detectors, any
multi-electron excitations, and scattering of the photoelectron from the excited atom
potential called AXAFS [24] and [25].

AUTOBK uses piecewise continuous fourth order splines, which are third order
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polynomials, to construct po(E)x because they permit only one full oscillation in
between knots which are the points that joins two of the splines. This sets the upper
bound on the maximum frequency of the background preventing it from interfering
with the frequencies contained in the XAFS data. The number of splines depends
on Rpxs and is determined by the number of independent points available for the
background. This is given by

2ARAk
e

Npkg = 1 (2.31)

where AR = [0,Ruig] and Ak is the data range in k-space. The Ny-1 knots of the
splines are evenly spaced in k-space and the abscissa is calculated so that the optimal
background is obtained while the first and second derivatives of the splines at the

knots are continuous. An example of ug(E)-x determined by AUTOBK is shown in
Fig. 2.3.
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Figure 2.3: Left panel: An example of copper K-edge u(E)x data and the background function
1o (E)x calculated by AUTOBK. Right panel: The isolated XAFS signal, x(k)-%,, which is the difference
between the pu(E)x and po(E)x of the right panel weighted by k to emphasize the oscillations at
high k. The wave number k is given by k = /2m(E — Ey)/h? where Eq is the energy threshold for
the 1s electron excitation as labeled in the left panel.

Normalization

Before AUTOBK determines 14(E)-x, the pre-edge background is removed and the edge
step normalized to 1.0. This procedure is referred to as normalization of the p(E)-x
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data and is done prior to the AUTOBK process so that the energy scale for all data
sets can be easily aligned.

To normalize the edge step the u(E)-x data is divided by Aug(Ep). To deter-
mine this normalization factor a line is fitted to the pre-edge region of the absorption
coefficient, defined as -200 to -50 eV before Ej, and to the post-edge region of the
absorption coefficient, defined as 100 to 300 eV after Ey. These lines are then ex-
trapolated to Eq where their difference determines Apug(Eq) which is essentially the
magnitude of the edge step.

We do not divide by po(E)-x determined by AUTOBK as described in the previous
section because this function will follow any low frequency oscillations in the data due
to experimental artifacts®. Errors due to the use of Aug(Eg) are assumed to be small
at the edge step where the absorption coefficient changes rapidly with energy.

When dividing by the constant Apy(Eg) an energy dependent error is introduced.
The ideal energy dependence of ug(E)-x is given by the energy dependence of the
absorption cross-section of the absorbing atom and these values are tabulated in the
McMaster tables[26]. This error is corrected by including an extra Debye-Waller
factor coefficient to the XAFS Eq. 2.10. This factor, denoted as o2, is calculated
by the code ATOMS and is determined by fitting the natural logarithm of the energy
dependent cross section of the absorbing atom to a polynomial in energy.

Next the pre-edge background is removed. This is the linear part of the absorption
coefficient due to the absorption of other atoms in the path of the x-rays and other
absorption edges of the central atom. It is calculated by fitting a line to the absorption
coefficient before the edge step and is the same line used to determine Apg(Eq) as
described above. The line is then extrapolated through the entire data range and
then subtracted from the data. A very steep slope for a pre-edge line is an indication
of a large total absorption coefficient. An example of a change in the pre-edge line
slope is shown in Fig. 2.4 for copper inside and outside the pressure cell. The added
absorption of the anvils for the data taken inside the pressure cell results in a steeper
pre-edge background.

Two codes, NORMAL and EOALI, have been written to produce normalized and
aligned p(E)-x data. These programs are often use with several sets of data since

they determine the steepest part of the absorption edge and align the energy axes for

2For example, artifacts due to the energy response of the detectors and changes in the harmonic
content of the x-ray beam
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Figure 2.4: Example of K-edge u(E)x data for a copper sample inside and outside of the pressure
cell. The addition of the anvils increases the total absorption by a factor of 1.23 resulting in a steeper
background.

all data sets. This alignment process is necessary since the absolute energy scale of the
monochromator often shifts slightly when moved through several thousand eV. Fig. 2.5

shows an example of copper K-edge u(E)x data before and after normalization.

Background Remowval Procedure

For completeness I will elaborate on the background subtraction procedure. There are
only two important values that need to be determined Ey and Ry,. Eo determines k
according to Eq. 2.30 and represents the Fermi energy as described in Sec. 2.1.1. Ry,
determines the number of knots used in the spline according to Eq. 2.31 and represents
the maximum frequency of the background function. The steps for determining these
parameters and removing the background are as follows:

e Data is normalized using either EOALI or NORMAL. An alignment energy
may be input or calculated as described previously. For consistency I choose
the value at mid-point of the edge step. This produces normalized data as
shown in Fig. 2.5.

e The background is removed from the normalized data using AUTOBK. A
choice for Ryx; and Ey, must be made. To begin, I chose Ryx; equal to
half the first nearest neighbor distance and Eq equal to the value at the
mid-point of the edge step as shown in Fig. 2.3.

e Once the background has been removed the resulting x(k)-data is given as
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Example of Copper K-edge u(E)x data before and after normalization. EOALI was given

the edge energy of copper together with the data in the left panel. A line was fit to the pre-edge
region and extrapolated through the entire data range and then subtracted from the data. The edge
step is also normalized. The result is shown in the right panel.

input to FEFFIT, a theoretical model for the first shell is fitted to the data
in R-space and a value for AE, is determined. This is a direct comparison
of the value calculated for the Fermi energy by FEFF to the value used by
AUTOBK which is usually set at half the edge step. Ideally AEq is about
one eV. If the value is larger than a few eV then the value for Ey given to
AUTOBK in the second step needs to be adjusted accordingly and this step

is repeated.

e Now that the data and theoretical model are reasonably aligned, the step

height of the normalized data which corresponds to this value for E is then
determined. Fig. 2.3 shows this step height as a dashed line at 0.20 of the
step. The intersection of this line with each data set determines the Eq for
each data set. Usually this corresponds to the same value for Eg+ 1 eV for

all data sets.

e Then the final background is removed using AUTOBK.

For simplicity I left out the determination of Ry, which in the above procedure

is left at the original value of half the first nearest neighbor distance. This value is

usually adequate for an open structure where Ry, is greater than 1.2 A but may

underestimate the maximum possible value for Ryy,. For structures where the first

nearest neighbor distance is less than 2.5 A the number of frequencies in the back-

ground as determined by Ryys becomes so few that Ry, must be chosen more carefully.
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In this case FEFFIT can vary a spline which represents a background function based
on a trial Ryi value. FEFFIT then reports the correlation coefficients between the
background and the fitted parameters. Iterating this process, Ryxg may be determined
so that the background is reasonable. The most important restriction on Ryyg is that

it cannot overlap with the fit range.

2.2.2 Fourier Transforms

Next, the Fourier transform of the data, x(k), from k-space to R-space is considered.
The theoretical model is fitted to the data in R-space which allows information from
individual shells to be easily separated. An example, of transformed data for a copper

sample is shown at the end of this section.

The Fourier transform of (k) is defined as

R) = \/%_w /O W(k)e2* dk (2.32)
where W(k) is the Fourier transform window and &% is a k-weight used to emphasize
the high-k region of x (k). The effect of the Fourier transform window is to smooth
the X(R). In this work the default Hanning window, which is a piecewise continuous
function that is zero outside the data range and equal to one over the data range,
is used. The transition region, called the window sills, are governed by squared sine
and cosine terms which are centered about the maximum and minimum £k values.
An example of the window for copper is shown in Fig. 2.6 where k,;, and k., are
labeled. The expression for this window and the others that are available may be
found in the FEFFIT documentation[27]. If £* used in the Fourier transform of data
is not given, the units of |Y(R)| can be used to determine its value. The power of the

inverse A minus one corresponds to the k-weighting.

In practice the integral equation for the Fourier transform is replaced by a fast

Fourier transform which is a sum over points given by

N

~ 1ok w i2rnm t
X(Ry) = \/mZk (ky)el2mmm/Na (2.33)
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Figure 2.6: The left panel shows the x (k)% data for copper along with the Hanning window used in
the Fourier transform. The window is specified by the values ki, and kyax which should go through
a node in the x(k) data and dk which specifies the total width of the sills. In this example dk = 1.5
A—1. The right panel shows the result of the Fourier transform.

and

N

2i0R i
v — kw —i27rnm /N 2.34
M) = 22> bae (2.34)

where k, = ndk and R,, = mdR. The k-space grid is 6k = 0.05 A~! and the array
sizes are Ng, = 512, 1024, or 2048. Details can be found in Ref. [27]. An important
point is that measuring x(k) at intervals smaller than the grid spacing is unnecessary
since this information is not used in the fit. This grid spacing is small enough to

resolve signals in R-space out to 31 A, well beyond the required range of about 10 A.

Fitting the theoretical model to the data in R-space allows the information from
specific paths to be easily separated. For example, the face center cubic structure for
copper means that the first and second nearest copper shells have a degeneracy of 12
and 6 respectively. For a unit cell length of a = 3.61 A the first shell is at a distance
of 2.55 A from a central copper atom and well separated from the next shell at 3.61
A, therefore, a model for the first shell alone can be fitted to the data in R-space
from 1.6 to 2.8 A. Fig. 2.7 shows the data and theoretical model in R-space and in
k-space. These figures demonstrate how the long frequencies due to the first shell in
k-space are separated from the higher frequencies of the other shells which are shown
together with the noise in k-space. The theoretical models are discussed in the next
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section.

2.2.3 Theoretical Models: FEFF

The basic ideas used in the FEFF calculation of the theoretical models are discussed
here. These ideas are important in interpreting the fit results as explained in Ref. [28]
where many important references to more detailed discussions can be found.

One of the goals of FEFF is to calculate a theoretical model in a way that re-
quires very little expertise from the user. With this goal in mind FEFF requires the
specification of the central absorbing atom and its relationship to its neighboring
atoms including their type and position. Given this information FEFF calculates the
expected XAFS signal represented by Eq. 2.10 with the passive-electron reduction
factor, S2, set to one and with no disorder represented by a zero Debye-Waller factor
coefficient, 0. These options may be given as input but I will use FEFFIT, a code that
fits the model to the data, to determine these parameters. FEFFIT is to be discussed
in the next section.

The theoretical model on which FEFF is based comes from the theoretical frame-
work of Ref.[15]. The model system is made up of a central absorbing atom with
atomic number, Z., surrounded by N neighbors of atomic number, Z,, at a distance,
R, each of which are surrounded by N’ neighbors of their own. The absorbing atom
is assumed to have a neutral atomic configuration. This is effectively what would be
expected on a very short time scale in a conductor. In a conductor a free electron
from the conduction band is attracted to the central atom by the Coulomb potential
created by the core hole. This is approximated by the electronic configuration of the
Z. + 1 atom with the core electron removed. Effectively, one removes a core electron
and places it in the next unoccupied electron state.

Next the “muffin-tin” potentials for each atom type within the model system are
calculated. Then the atomic charge densities for each atom in the model are over-
layed and spherically averaged about the atomic centers. These spherically averaged
densities are then integrated out to the “Norman” radius, R,,,, where the total charge
is equal to the atomic number of the atom. The muffin-tin radius, Ry, is calculated
by proportionally decreasing R, until the spheres of radius Ry, just touch. The
interstitial potential and charge density is determined by averaging the charge left
between R, and R, for all atoms. This model for the atom potential works best

for monatomic solids but may overestimate the interstitial charge density in open
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Figure 2.7: Top: x(k)-data and theoretical model for copper. The vertical line represent the data
range, kmin and kmax. Middle: Im ¥(R)-data and theoretical model. Bottom: |{(R)| data and
theoretical model. The theoretical model includes the scattering paths from the 12 copper atoms of

the first shell only. The vertical lines represent the fitting range.
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structures and molecules. This error can be partially corrected for by adding addi-
tional energy shifts to the equation for the photoelectron wave number which travels
between these “muffin-tin” potentials which represent the atomic potentials in the
solid (see Eq. 2.37 to be discussed in the next section). Additional energy shifts are
used to model RbCl, AgCl and AgBr as discussed in Chs. 5 — 7.

After the atomic potential are calculated the energy reference is determined. The
energy reference, experimentally set to approximately half the edge step, is funda-
mentally the Fermi energy which lies at the last filled electron state of the solid. It
is represented by the chemical potential, i, of a homogeneous electron gas at the
average interstitial charge density. This approximation tends to be a few eV higher
than that calculated from self-consistent calculations which are a part of FEFF8 but

not used in this thesis.

With a model for the atomic potentials and the energy reference calculated, the
scattering amplitude of the photoelectron from these atomic potentials is determined.
The unperturbed system consists of a photoelectron with some energy and angular
momentum moving in a uniform electron gas with charge density of the interstitial
region containing a complex part to account for energy losses[29]. This is a represen-
tation the photoelectron in the region in between the atoms were phonon vibrations
and other interactions can cause the photoelectron to lose energy. The perturbation
is the scattering from the muffin-tin potentials centered at the atomic sites. This is
a representation of the actual scattering of the photoelectron from the surrounding
atoms. The Partial-wave phase shifts are determined by matching the solutions to free

spherical waves in the complex interstitial scattering potential to the XAFS equation.

The results of the FEFF calculation are in terms of the effective scattering am-
plitude, total phase shift and mean free path of the photoelectron as a function of
wave number for all possible scattering paths of the photoelectron. Splitting up the
contribution to the XAFS signal from each scattering path is important for the anal-
ysis of the data. As discussed in Sec. 2.2.2, the magnitude of the Fourier transform
of the XAFS data, |Y(R)|, peaks at positions related to the half path length of the
photoelectron. In the fitting process we choose the fitting range in R-space which
corresponds to particular scattering paths. Since FEFF outputs its results for every
scattering path the model includes only the paths that contribute to the fitting range
in R-space. (see Fig. 2.7)
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2.2.4 Fitting Theoretical Model to Data: FEFFIT

The theoretical model of FEFF is fitted to the data using FEFFIT[27]. The model,
Xmodel, USed by FEFFIT is written as

Npaths

Xmodel (K) = Y Im[x; (k)] (2.35)
j

where Npans are only the paths that contribute to the fitting range in R-space and
X;j(k) is the complex contribution from each path. The contribution from each path
used by FEFFIT is very similar to our previous expressions for the XAFS Eq. 2.27. A
physical interpretation of each of the components of the XAFS equation are described
in Sec. 2.1. There are a few differences between the XAFS Eq. 2.27 and the equation
used by FEFF which make it desirable to look at the form used by FEFF and distinguish
between the parts calculated by FEFF and those that may be varied in the fit.

~ (N;SPF(k)
X;(k) “k(Ro; + AR;)

2
2 exp {—QPR()J' — 2p20'12 + §p4C4]}
(2.36)

' 4
-exp {Z[QkRoj +6;(k) — §C3jp3 + 2p(AR; — QUi/ROj)]}

Each of these terms is discussed in detail in the first three sections of this Chapter and
only differences are discussed here. For simplicity the fitted parameters are shown in
bold type. We have replaced r; with Ro 4+ AR; where Ry is the half path length given
as input to FEFF and AR is a fit parameter. There are two momentum references
p and k in Eq. 2.36. This is because FEFF calculates the XAFS as a function of p,
the complex local momentum with respect to the zero of the muffin-tin potentials
described in the previous section, and writes the scattering amplitudes, F;(k), and
phase shifts, ;(k), as a function of ke, the real momentum with respect to the Fermi
energy. The value of kg is directly compared to the experimental value for Eq chosen
to be the energy at the midpoint of the edge step as described in Sec. 2.2.1. Because
the Fermi energy calculated by FEFF is typically in error by a few eV, the scale can
be shifted by fitting an energy shift, AEg;. The shifted scale is given by

2
k= \/ k2 — AEOJ-B—ZL. (2.37)
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The complex momentum, p, can also be determined in a fit to the data and is given

by the following expression

p= \/ {Reby1+ 505 | +iam - (2.38)

where Re[p;(k)] and A;(k) are taken from the FEFF calculation and AEi;, an imag-
inary energy shift, is a fitted broadening term to account for finite experimental

resolution.

In this picture up to seven parameters for each path may be determined by a fit to
the data. These parameters are: (N;S2) the degeneracy of the path and an amplitude
reduction factor, AEi; a broadening term, AEy; a shift in the energy reference, AR,
a change in the half path length, crf a mean square displacement about the half
path length and Cg; and Cg4; the non-symmetric disorder terms. Not all of these
parameters should be allowed to vary independently. Fortunately, FEFFIT is ideal for

writing mathematical constraints in terms of these fundamental parameters.

For our previous copper example (see Fig. 2.7) the first shell requires 4 parameters:
a = -0.0036(2), 02 = 0.0081(1) A2, S = 0.68(1), AE; = 1.5(1) eV. Here all the
parameters expect « are fundamental XAFS parameters described above. N was set
to 12, the known degeneracy of the first copper shell. The third and fourth cumulants
and the imaginary broadening parameters were not needed. « was defined in terms
of Ar to represent the fractional change in the radial distance to the first shell, Ar
= aRegr where Reg = 2.555 the original distance given to FEFF. This change of
parameters is often used when the the distance to each shell is expected to change by
the same fractional amount. Therefore a single o parameter can be used to determine
the distance to each shell used in the fit.

FEFFIT also calculates several statistical quantities for judging the quality of the
model. These quantities include: the number of independent points and the number
of degrees of freedom in the data, several measures of the goodness-of-fit, and error

estimation and correlation coefficients for fitted parameters.

The best-fit values determined by FEFFIT minimize the sum over f; where f; is
the squares of the difference of the real and imaginary parts of the model and data
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in R-space. This is written as

N N
Z fi= Z Xdata(Ri) — Xmodel (Fi)- (2.39)
i—1 -1

Here, N is the number of evaluations of the function. The meaning of N is a bit
tricky since the measurement of each point of u(E) is independent but these points
are not an independent measurements of the atomic distribution function that we are
interested in finding the best-fit for. In analyzing the data one looks for a frequency
in k-space. The resolution, therefore, depends on the length of the k-space data,
the bandwidth, and the fitting range in R-space which specifies the frequency range.

More precisely, the number of independent points in the data is given by

2ARAK
T4

- 2 (2.40)

Nidp =

where AR and Ak are the data ranges in R-space and k-space respectively[30]. The
number of variables fitted to the data must be less than the number of independent
points and their difference, v, represents the degrees of freedom in the fit. The correct

function to minimize in the Fourier transform analysis becomes

N N N
idp ~ ~
i= ata R;) — mode R;). 2.41
;f N Eth( ) — Xmoder (1) ( )

Goodness-of-F'it

The usual measure of the goodness-of-fit is chi-squared, x2, defined as

N £\2
2 i
= s 2.42
=y (£) (.02
where f; is the difference between the data and fitted function as defined in Eq. 2.41, N
is the number of function evaluations and ¢; are the uncertainties in the function|[31].
As discussed above the number of functional evaluations in XAFS data does not
have the usual significance expected in this definition. The quantity of importance
in XAFS data analysis is the number of independent points so the definition for y?
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becomes,

Nidp 2 N 2
fi Nip fi
=) <€—> = 1\? ) <€—> . (2.43)

i=1 i=1

The uncertainty in the measurement, ¢;, has both statistical and systematic con-
tributions. Its contribution from statistical noise can be obtained by measuring the
fluctuations in R-space between 15 and 25 A. One assumes that there is no structural
contribution in this range due to the exponentially decreasing Debye-Waller factor
term in the XAFS equation which dominates for large R. With this interpretation e
no longer depends on i and can be brought out of the sum in Eq. 2.43. Other sources
of uncertainty in the measurement include systematic experimental errors and un-
certainties in the FEFF theoretical model itself. These uncertainties are difficult to
estimate and are, therefore, left out of the calculation done by FEFFIT. This typically
results in an overestimate of the value for x2.

A poorly scaled x? is not a problem when comparing two different models where
the value for € is consistently chosen. In general the model with the lowest x? is the
best. For two models with a different number of variables the reduced-x?, x2, should
be compared. 2 is equal to x? divided by, v, the number of degrees of freedom in the
fit. Therefore, if x? decreases when adding an additional parameter but x? increases,
the fit has not been improved. In this way x2 can be used to determine the usefulness
of a particular parameter.

Typical values for x? are as large as several hundred making it difficult to establish
the correctness of the model. Since large values of x2 may result from either a poor

model or from an underestimation of the value of ¢, FEFFIT also calculates an R-factor
defined as

L ARP ()} 4
Zi:l{[Re(Xdatai)]Q + [Im(Xdatai)]Q}

to help distinguish between these two cases[31]. The R-factor gives a sum of the
fractional error and is directly proportional to x2. As long as the R-factor is less than
a few percent one is confident that the large x? value comes from an underestimation
in the systematic errors.

In our copper example the number of parameters determined in the fit is four and
the number of independent points in the data is Nig, = 19 as determined by Eq. 2.40
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therefore the degrees of freedom in the fit is v = 15. The R-factor = 0.1%, x? = 97
and the x% = 6. (see Fig. 2.7)

Error Estimation and Correlations

FEFFIT also calculates an estimated error and correlation coefficients for the fitted
parameters. Similar to the procedure of Bevington[31], each parameter is varied
about its best-fit value until the value of x? increases by one from its minimum. The
correlation coefficients range from zero to one and express the degree to which each
parameters depends on the other parameters. All correlation coefficients greater than
25% are reported by FEFFIT.

Correlations greater than 80% need to be considered with special care. There are
different methods for breaking these correlations depending on the type of parameters
that are correlated. Most of the parameters have unique k-dependences which can
be used to break the correlation by varying the k-weighting in relation Eq. 2.32.
The amplitude parameters S and o2 and the phase parameters AEy’ and AR; are
examples of parameters which are often strongly correlated. For the phase parameters
energy shifts dominate at low k, therefore, small k-weightings will give the best-
fit values for energy shifts while the changes in the half path length dominate at
high k, therefore, larger k-weightings will give the best values for the changes in
the half path lengths. Another invaluable tool for breaking correlations is to use a
parameter’s expected dependence on an extrinsic parameter such as temperature and
pressure. For example, the value for S? should be constant for all temperatures or
pressures while one expects changes of the mean square displacements in the half
path length as a function of temperature and/or pressure. In general, simultaneously
fitting several k-weightings for a data set and several data sets at different pressures
or temperatures is a powerful tool for breaking the correlation between parameters
and is used extensively in this thesis.

For the copper example three k-weightings of w = 1, 2, 3 were used. The data was
simultaneously fit to the corresponding data sets in R-space so that the best-fit values
are independent of the k-weighting used in the analysis process. The uncertainty in the
fit parameters was shown in the preceding section. The correlation coefficient for S3
and o? is 94% and for a and Ey is 91%. Unfortunately FEFF calculates the correlation
coefficients for a single k-weighting even when several are used. The reduction in the
correlation coefficients due to the use of the different k-weightings is definitely not as



large as one might hope. The Chapter 4 shows how this can be estimated.
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Chapter 3

XAFS EXPERIMENTS

A high pressure x-ray absorption fine structure (XAFS) experiment can be sepa-
rated into three parts, the experimental setup, the sample preparation and the mea-
surement. Each of these parts is discussed below.

3.1 Experimental Setup

Fig. 3.1 shows a schematic of an XAFS transmission experiment. The main com-
ponents are: the monochromator used to select the x-ray energy, the pinhole used
to define the cross section of the x-ray beam, the ion chambers used to sample the
incident and transmitted x-ray intensities and the pressure cell and oil pump used
to generate a high pressure sample. Each of these components is discussed in the

following sections.

Monochromator
Transmitted Incident

Ion Pressure Cell Ion /J,a, , = NI
Chamber Chamber ‘ K x-rays
Tg--11-—- H‘}o ”””” ‘ ****** /

Pinhole p
(ps)
:
Oil Pump Amplifiers &
Computers

Figure 3.1: A schematic of a high pressure XAFS transmission experiment.
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3.1.1 Monochromator

The main component of the monochromator is its two parallel silicon crystals. The
first crystal is set at an angle # with respect to the incoming x-ray beam to select the
desired x-ray energy. The second crystal is set parallel to the first so that the x-ray
beam is reflected in the direction of the experiment as shown in Fig. 3.1.

The x-ray energy selected by the monochromator is determined by the Bragg con-
dition which states that the x-rays reflected from two neighboring planes of atoms
must coherently interfere. This condition is satisfied when the extra distance trav-
eled by the x-rays to the farther plane of atoms is equal to a multiple of the x-ray
wavelength, i.e. 2d-sinf# = m-\ where m is an integer, as illustrated in the Fig. 3.2.
For m greater than 1 the x-ray energy is called the (m-1)-th harmonic. From Bragg’s
condition the higher harmonics are selected along with the desired energy. There are
many methods for eliminating the higher harmonics. Their elimination is necessary
since they will distort the XAFS signal (see Sec. 3.3.2). The most common methods
used in this thesis will be discussed here.

Figure 3.2: The Bragg condition, 2d-sinf = m-A where m is an integer, states that the x-rays
reflected form two neighboring planes of atoms must coherently interfere. This means that the extra
distance traveled by the x-rays to the farther plane of atoms must be equal to a multiple of the x-ray
wavelength.

One of the simplest methods for completely eliminating several of the harmonics
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is to choose a crystal cut in which, as a result of its basis, the two reflected x-rays
completely destructively interfere. This is referred to as a zero structure factor for
that particular harmonic. Ideally we would like to to choose a crystal with a zero
structure factor for the second harmonic. This is because the second harmonic will
have the greatest intensity of the harmonics due to the profile of the source. Briefly,
the profile of the source has a maximum x-ray intensity at about 11.2 keV for Stanford
Synchrotron Radiation Light Source (SSRL) and at about 4.3 keV for Brookhaven
National Laboratory (BNL). The exponential decrease in the intensity leaves a usable
x-ray energy range from about 3 keV to about 40 keV with virtually no intensity
above 100 keV so that the second harmonic will have the greatest intensity of the
harmonics and therefore we would like to eliminate it completely. The structure
factor is determined by the cut of the crystal which is referred to by the (hkl) indices
for the crystal plane parallel to the surface. Silicon has the diamond structure so a
harmonic will have a zero structure factor if its wavelength given by m-(h + k + 1),
where m is the harmonic number, is equal to twice an odd number[32]. Since we
are interested in a zero structure factor for the second harmonic, the relation for
this harmonic to vanish simply becomes (h + k + [) = odd. Table 3.1 lists several
common silicon monochromator crystals used at SSRL and BNL along with their
lattice spacings, energy ranges and whether the second harmonic is allowed.

Table 3.1: Several silicon monochromator crystals, lattice spacings and energy ranges. The crystal
cuts are referred to by the (hkl) indices for the plane parallel to the surface of the crystal. The
energy range depends on the plane spacing and the size of the crystal which determines the 6 range.
Here we have used a minimum and maximum angles of 17° and 31° respectively to calculate the
energy ranges. Second harmonics, are not allowed when the structure factor vanishes, h + k + 1 =
odd[32].

|h k 1 2d(A) Energy range (keV) Second harmonics |
1 1 1 6.2708 5 to 26 not allowed
2 2 0 3.8400 12 to 42 allowed
3 1 1 3.2744 17 to 50 not allowed
4 0 0 2.7154 24 to 60 allowed

To further reduce the number of x-rays with high harmonic energy we slightly
misalign the second crystal. This process is called detuning. Detuning works because
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the profile of the x-rays with the high harmonic energies is much sharper with respect
to 6 than that of the x-rays with the fundamental energy. Taken from Ref. [33]
Fig. 3.3 shows the reduction of higher harmonics by detuning. In this example the
second silicon (111) crystal is misaligned by 3.5 arcsec at an energy of 10 keV. As
shown in the figure the fundamental x-ray intensity is reduced to about 50% of its
original intensity while the third harmonic x-ray intensity is reduced to about 0.01%
of its original intensity. The second harmonic is not allowed because its structure

factor vanishes.
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Figure 3.3: The reduction of harmonics by detuning. The silicon (111) crystal is misaligned by 3.5
arcsec at Eg=10 keV. The fundamental x-ray intensity is reduced by 50% while the third harmonic
is reduced by 99.99% of their original intensities.
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In practice, when we detune the monochromator, we monitor the percent decrease
in the voltage reading of the Iy ion chamber, which is directly proportional to the
intensity of the x-ray beam, for a specific angle at a specific energy. The energy is
usually chosen to be 100 eV above the edge energy (see Chap. 2). We refer to this as
the percentage detuned at the specified energy. A slight complication to the detuning
process occurs because the height of the x-rays reflected from the crystal in relation to
the height of the optical table depends on the angle of the crystal. Since we use a very
small pinhole, 500-300 ym in diameter, detuning often leads to a dramatic decrease
in the intensity reading due to a change in height of the x-ray maximum with respect
to the table. To detune properly table alignment and the detuning processes must be
iterated.

Another common detuning problem can occur because the misalignment of the
second crystal is fixed while the energy of the x-rays is incremented over a range
of several hundred eV. This will cause the percentage detuned to either increase or
decrease depending on the direction in which the second crystal is misaligned. This
change does not cause a problem unless the monochromator becomes (almost) fully
tuned. To identify this problem one checks the intensity spectrum for the Iy ion
chamber. A normal intensity spectrum will change slowly with energy where as this
detuning problem will show a dramatic peak. One solution is to detune by a larger
percentage so that the monochromator never becomes fully tuned. Another solution
is to detune the crystal in the other direction so that the percentage detuned increases
throughout the energy scan. I usually choose to misalign the crystal in the direction
that corresponds to the least amount of detuning at the end of the energy scan where
the XAFS signal is smallest.

3.1.2 Pinhole

A clever pinhole design was devised by Y. Yacoby. A schematic is shown in Fig. 3.4.
It consists of a sheet of lead about 2 mm thick sandwiched in between an optical
mount and a sheet of copper about 5 mm thick. The copper sheet has a small hole
and a groove to mark the placement of a cylindrical tool that holds the needle used
to make the pinhole. By adjusting the length of the set screw at the base of the tool
the length the needle plunges into the lead can be changed determining the size of
the pinhole. In practice this becomes an iterative process where we start with an
undersized pinhole, check the size with a microscope and then shorten the length of
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the set screw. Typical pinhole sizes are from 300 to 500 pym in diameter depending on
the size of the sample. Generally the pinhole diameter is chosen to be 100 ym smaller
than the sample diameter. This is to insure that the all the x-rays pass through the
sample and not the edge of the gasket. The pinhole assembly is then easily attached

pinhole assembly tool
X\ """ “ @

t00l—_ |  Fefe PN
placemEP@

groove

copper  lead  optical A || needle
plate sheet mount  set
screw

Figure 3.4: A schematic of the pin hole assembly and tool. A lead sheet is placed between an optical
mount and a copper plate. The copper plate has a small hole and a groove to mark the placement
of a cylindrical tool that holds the needle used to make the pinhole. The length of the set screw at
the base of the tool determines the pinhole size which typically ranges from 300 to 500 pm.

to four optical motors which give it two rotational and two linear degrees of freedom.
These motors are then adjusted to optimize the x-ray flux through the pin hole.

3.1.8 Ion Chambers

The ion chambers consist of two parallel plates and a region in between that is filled
with a gas. The chambers are aligned so that the x-rays travel through the gas and
between the plates. A high voltage is applied across the plates so that they become
parallel plate capacitors with a strong electric field in between and perpendicular to
the plates. When the x-rays travel through the gas a fraction of them will ionize
the gas molecules. The electrons and ions are then pulled to opposite plates of the
capacitor by the electric field. When these ionized parts hit the plates they produce a
current that we measure. The current is sent directly to a preamplifier which outputs

a voltage that is sent to an amplifier and then a voltage to frequency converter that
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outputs a digital form of the voltage. The digital voltage is directly proportional
to the amount of ionization. These ion chambers are described in some detail in
Refs. [34] and [35].

The digital voltage reading from the ion chamber is simply related to the actual
number of x-rays absorbed and should be checked to determine the correct sampling

time:

eX-Ray Energy Number of X-Rays

Second (3.1)

Voltage = Amplifier Gain:

Effective Ionization Energy

Since the effective ionization energy is about 30 eV the number of x-rays per second

becomes

Number of X-Rays 2x10%Voltage
Second ~ Amplifier GainX-Ray Energy(eV)’

(3.2)

As discussed in Sec. 3.3.1 we should have a voltage reading due to approximately

5 x 108 x-rays in the incident ion chamber for each measurement.

Several precautions should be taken to ensure an accurate ion chamber current.
First, the appropriate gas or gas mixture needs to be decided and is discussed below.
Second, the bias voltage applied to the plates which creates the electric field should
be checked. It should be well into the saturation region for the response of the ions to
the electric field, usually chosen to be about 500 Volts, which ensures that the ions do
not recombine with each other. The third precaution is to keep the ion chambers clear
of any other ions or polarizable molecules that could combine with the ionized gas
molecules. The major source of this type of contamination is the oxygen molecules

in air which attracts the electrons.

The appropriate gases in the ion chambers are determined by the optimum ab-
sorption coefficients. The usual choices consist of He, Ny, Ar and Kr and in general
higher x-ray energies require heavier gases. As discussed in Sec. 3.3.1 the absorption
coefficients need to be about 1/4 for the incident ion chamber, Iy, and about three
for the transmitted ion chamber, I;. The edge energies of the sample and pressure
calibrant are used to determine the appropriate gases with the help of the McMaster
tables[26] or an extremely useful version compiled by Matt Newville[36] which con-
tains a graph for each ion chamber depicting the x-ray absorption coefficients for the

available gases as a function of x-ray energy.
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3.1.4 High Pressure Experiment

In the vast majority of high pressure experiments diamond anvils are used instead of
sintered boron carbide, B,C, anvils. Diamond anvils have several advantages based
on their transparency and hardness. The alignment of the diamond tip to the surface
of the gasket is made extremely accurate by producing Newton rings that vanish when
the alignment is within a wavelength of light. This and the hardness of the diamonds
makes the maximum attainable pressure very high at about 100 GPa. The pressure
and pressure gradients are accurately determined using the optical properties of ruby
fluorescence. The one short fall of the diamond anvil in an XAFS experiment is its
crystal structure. In an XAFS experiment the energy of the x-rays is incrementally
increased over a range of several hundred eV. This process will inevitably encounter
energies that satisfy Bragg conditions for the crystal structure of the diamond. This
causes the x-rays to be reflected out of the line of the x-ray beam leading to large dips
in the transmitted x-ray intensity. As shown in Fig. 3.5 these Bragg glitches destroy
the XAFS signal. Remember, u(E)-x = In(Iy/I;) so these dips appear as peaks in the
figure.

3.0 ' , ' , ' , ;
B Br_agg ., T
A 2.0 3['.?[‘58 _’ l 7]
a N DAC |
E ! |
1.0 | L\..,-'-»-\JL\_L;
0.0 - - . , . , . , —
8800 9000 9200 9400 9600

ENERGY (eV)

Figure 3.5: XAFS data of copper in a diamond anvil cell, DAC. The large peaks are a result of the
x-ray energy satisfying a Bragg condition for the crystal structure of the diamond. The x-rays are
then deflected from the transmitted ion chamber.
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We use sintered B,C anvils because they are polycrystalline, thereby yielding no
Bragg glitches. The alignment is based on precision machining of the pressure cell
bore and the pistons[37], (see Fig. 3.6). This type of cell allows for a maximum
pressure of about 20 GPa. We determine the pressure by taking XAFS data of a
cubic material for which we can accurately determine the amount of compression.
The compression is then related to the pressure by a compressibility table. We have
found that this method produces an uncertainty of about & 0.5 GPa, the largest
source of error being in the compressibility tables. Another disadvantage of using

B,C anvils is that pressure gradients cannot be measured directly.

RETRACTING SUPPORT
KNOB BACK
O-RING DISK GASKET STOP
j /
4 X-Tays
N - N

=
il /

ZO A —

PISTON RETAINING BORON CARBIDE
HYDRAULIC \ ANVIL TIP
pump ~ HYDRAULIC RING g aAMPLE

Figure 3.6: A schematic of the high pressure XAFS cell[37]

Sintered B;C Anwvils

Since the x-rays pass through the boron carbide (B4C) anvils, their absorption coef-
ficients contribute to the XAFS signal and must be considered when determining the
optimum sample thickness as discussed in Sec. 3.2.2. Here we will derive a simple
equation to calculate their absorption at any energy. The energy dependent absorp-
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tion coefficient of the B,C anvils is given by

pE)x = (pg(E)p + po(E)oy (3-3)

where pg and pc are the partial densities of boron and carbon respectively, og and
oc are the energy dependent absorption cross sections and z is the thickness of the
anvils. Given that the partial densities of B4C are 1.97 gr/cm? for boron and 0.55
gr/cm? for carbon and that the total thickness of two anvils is about 0.4 cm, Eq. (3.3)
reduces to

1(E)x = 0.79-0(E) 5 + 0.22-0(E) ¢ (3.4)

where oc and op are measured in cm?/gr. Fig. 3.7 shows the energy dependent
absorption coefficient for two B,C anvils. The maximum total absorption pu(E)-x
for the anvils and sample is about 2.5 therefore the energy that corresponds to an
absorption coefficient of about 2 just for the anvils is about 8 keV. This sets a low
energy limit on high pressure experiments corresponding to the k-edge energy of nickel
which is the lightest element that we can look at under very high pressures. One
obvious solution is to make the anvils thinner with the trade off of a lower maximum

pressure.

Gaskets

The gaskets are made from the inconel 600 series which is a soft nickel alloy. The
pieces of inconel are rolled to the proper thickness and then punched out in disks with
a 10 mm diameter. Sample holes are then drilled in the center. Finally the inconel is
heat treated to relieve stresses caused by the rolling and drilling processes.

The gaskets’ sample hole size and thickness is determined by the pressure range
of the experiment and are listed in Table 3.2. In general the diameter of the sample
hole should be % the diameter of the anvil tips. For a full treatment of the gasket in
a high pressure cell see Ref. [38].

High Pressure Sample

For room temperature measurements, a hydrolic oil pump is used to generate a high
pressure sample. As shown in Fig. 3.1 the hydrolic pump pushes oil into a chamber
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Figure 3.7: The energy dependence of the x-ray absorption coefficient for two 2 mm thick B,C anvils.
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Table 3.2: The appropriate gasket thickness, sample hole diameter and anvil tips diameter for the
pressure range of the experiment.

Anvil tip Sample hole Gasket
Pressure range . . .

diameter diameter thickness

(GPa)
(mm) (mm) (pm)

0 to 2 2.5 0.8 500
0 to 8 2.0 0.8 to 0.5 400 to 250
5 to 20 1.5to 1.4 0.5t00.4 250 to 200

which advances the piston. The piston is attached to a BC, anvil which is in direct
contact with the gasket containing the sample. This system will relax, therefor a
minimum of 15 minutes should be allowed between raising the pressure and taking
the data.

It is advised to take reference data, of both the sample and the pressure calibrant,
before the gasket and sample is loaded in the pressure cell. This is important because
the pressure can be raised simply by tightening the pistons in the loading process,
without the data outside the pressure cell you do not have a known reference point.
For low temperature measurements, high pressure helium gas is used to generate a
high pressure sample. The design is based on Ref. [39] and uses a inflatable diaphragm
to advance the piston. A cold finger is used to cool the entire pressure cell. The basic
design is shown in Ref. [40]. This design has the draw back that ice was allowed to
form in the path of the x-rays. This changes the total absorption leading to strange
background functions. I re-designed the apparatus as shown in Fig. 3.8 replacing the
Styrofoam insulation with a vacuum to eliminate this problem. My design was also
flawed in that the system cooled to 150 K, instead of to liquid nitrogen temperature
(77 K) but this temperature was sufficient for my AgCl and AgBr data.

3.2 Sample Preparation

This section is broken up into two parts: the choice of pressure calibrant and the
sample preparation. The high pressure calibrant is also a sample that needs to be

prepared in much the same way as the sample of interest therefore this discussion is
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Figure 3.8: A diagram of the low temperature apparatus.

left to the second section on sample preparation.

3.2.1 Choice of Pressure Calibrant

The choice of material used as the pressure calibrant depends on several factors. The
analysis process and the availability of equation of state data are among the most
important considerations. The approximations used in theoretical calculations of the
XAFS parameters are best suited for monoatomic materials[28]. Equation of state
data for simple metals are easily found so we usually choose between copper, niobium
and silver as our calibrants which are cubic so that they compress uniformly. Other
materials such as NaBr and RbCl have also been used but are difficult to analyze
given their ionic bonding, non-symmetric atomic potentials, and phase transitions at
5 and 17 GPa respectively. The edge energy is another important factor. The edge
energy of the sample and calibrant should be close so that we minimize the time
needed to move the monochromator. It is optimal for the edge energy of the calibrant
to be much lower than that of the sample so that the absorption at the edge energy
of interest will be dominated by the sample. Still another consideration in choosing

a calibrant is its stability. To verify that no pressure induced chemical reactions have
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occurred it is essential to compare the XAFS data of the sample and calibrant before

and after the release of pressure.

3.2.2  Samples

The most important characteristics of an XAFS sample are its thickness, homogeneity
and purity. For all of our experiments the sample consists of not only the substance
which we want to study but also the pressure medium (carbon grease) and a pressure
calibrant, usually chosen to be Nb, Ag or Cu powder. The calibrant is then mixed
with the grease in the proper weight ratios. If the sample is also a powder as for
RbCl then it is also mixed with the calibrant and grease. If the sample is a pellet as
for AgCl and AgBr then the pellet is sandwiched in between the calibrant and grease
mixture. The final combination is placed in the gasket as illustrated in Fig. 3.6. At
each pressure XAFS data is collected for the calibrant and the sample both of which

are together in the pressure cell.

Sample Purity

Most of the samples used in this thesis came from the Alpha Co and are at least
99.99% pure. Some specific precautions needed to be taken with just about every
sample used in this thesis. RbCl is hygroscopic so this sample was heated to about
400K for about one hour to remove any water and then it was stored in a desiccator
until it was used. The calibrants, copper or niobium powders, can oxidize so it is
important to keep them packed in an air tight container filled with an inert gas.
AgCl and AgBr are light sensitive so they were stored in a special foil used for this

purpose.

Sample Homogeneity

The homogeneity of the sample is important because the XAFS signal will be atten-
uated if part of the x-rays do not pass through the sample as discussed in Sec. 3.3.2.
Uniform powder samples are achieved by requiring the particle size to be less than
the thickness of the sample and then mixing the powder very well with the pressure
medium. For thin foils and soft materials the sample is squeezed to the appropriate
thickness and then cut to fit in the sample hole of the gasket. For these types of
samples it is important that the pinhole which defines the x-ray beam is considerably



a0

smaller than the gasket sample hole so that all the x-rays pass through the sample.

Sample Thickness

The sample thickness is determined by optimizing the signal to noise ratio. As dis-
cussed in Sec. 3.3.1 this corresponds to an edge step absorption coefficient of about
1.0 while the total absorption coefficient does not exceed 2.55. The edge step absorp-
tion coefficient is defined as the change in the absorption coefficient evaluated at 50
eV below and 50 eV above the edge energy. The total absorption coefficient is evalu-
ated at 50 eV above the edge energy. For our pressure experiments these absorption
coefficients include not only the sample of interest but also a pressure calibration sam-
ple, the pressure medium and the anvils. Table 3.3 lists the appropriate absorption

coeflicients and their corresponding thicknesses for the AgBr experiment.

Table 3.3: The absorptions coefficients for the AgBr experiment. Nb was used as the pressure
calibrant and carbon grease was used as the pressure medium. The initial thickness of the gasket
was 250 um which equals the thickness of the AgBr and Nb samples plus the grease. The thicknesses
were determined so that the total absorption coefficient, u(E)x, was about 2.5 while the edge step
absorption coefficient, Au(E)x, was about one for both the Ag and Nb k-edges.

Ag k-edge Nb k-edge
x (pm) | p(E)x Ap(E)x | p(E)x  Ap(E)x

AgBr 63| 1.64 1.00 1.43 0.21
Nb 10| 0.34 0.04 0.71 0.59

grease 1771 0.01 - 0.01 -
anvils 4000 | 0.23 0.01 0.35 0.03
total 2.22 1.05 2.50 0.83

3.3 XAFS Measurements

The most important decisions in an XAFS measurement are the appropriate absorp-
tion coefficients for ion chambers and sample and the appropriate time needed to
accurately determine the incident and transmitted x-ray intensities. These quantities

can be determined to maximize the signal to noise ratio. Here we consider noise
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due to the statistical fluctuations in sampling a finite number of x-rays. For a more
general and complete derivation of the signal to noise ratio see Ref. [41].
3.8.1 Signal to Noise

The noise in the XAFS signal due to statistical fluctuations is defined as the standard
error in the absorption coefficient of the sample, us-xs, which we will denote as

N = §(psxs)- (3.5)

The absorption coefficient for the sample, usXs, is the natural logarithm of the ratio

of the transmitted to incident x-ray intensities and is written as
L Xs = In = (3.6)

where Iy and I; are the quantities we measure. Using the rule for the propagation of
error[31] we find that the error in p4xs can be expressed as

6 (psxs)? = ((5(;;#1?3))25102 + (%)2513. (3.7)

From Eq. 3.6 we substitute the partial derivatives of us-xg with respect to Iy and I in

the previous expression which becomes

1\’ 1)’
S (psxs)? = (E) 61p% + (i) L2 (3.8)

Since d1; is the standard error in the number of x-rays measured, dI; = +/I;, the noise
in the XAFS signal is simply the square root of the reciprocal sums of the incident

and transmitted intensities,

N =0(usxs) = /— + —. (3.9)
Ip Iy
Now I can write the signal to noise ratio as
QA X

(3.10)

zl»n
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where the XAFS signal is simply a fraction « of the step height that contains the

oscillations. The x-ray intensities in the signal to noise ratio can be related to the

Xt I’ H0oX0 I

TIon Chamber?2 Ion Chamberl
Pressure Cell

Figure 3.9: The intensity of x-rays attenuated by each ion chamber and sample. I have labeled the
absorption coefficients and the lengths of the incident and transmitted ion chambers and the sample
with the subscripts 0, t and s respectively.

geometry of the experiment. Fig. 3.9 shows the labels for the attenuation of the x-rays
by each ion chamber and the sample. I have labeled the absorption coefficients and
the lengths of the incident and transmitted ion chambers and the sample with the
subscripts 0, t and s respectively. The x-rays absorbed in the first ion chamber can

be written as
I[p =1— Te /&0 (3.11)

where I is the initial x-ray intensity. If the incident intensity for the second ion
chamber is I’ then the x-rays absorbed in the second ion chamber can be written

similarly as
[ =1 —Te #, (3.12)

I’ is equal to the initial x-ray intensity attenuated by the first ion chamber and the

sample,

I' = Je—Hwo—ims, (3.13)
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Using these expressions for the x-ray intensities the signal to noise ratio of Eq. 3.10

becomes

(3.14)

1
1 olss+uxo \ T3

+ .
1 — e—#&0 1 — e—mxt

S
N TaA pgxs (

The optimum values for the absorption coefficients can be found by setting their
partial deviates to zero. The nontrivial solutions are pgxy = 0.22 and ugxs = 2.55
with infinite absorption coefficient for the 2nd ion chamber. In practice the 2nd ion
chamber is set to absorb no more than 95% of the incoming x-rays which corresponds
to pyxy = 3.0 so that the entire length of the ion chamber is used.

Another important decision in any XAFS experiment is the amount of time needed
to accurately determine the x-ray intensities. This corresponds to the amount of x-ray
flux needed to give a reasonable signal to noise ratio. The signal to noise relationship
in Eq. 3.14 goes like the square root of the initial x-ray intensity. Using the optimum
values for the absorption coefficients of the ion chambers and sample Eq. 3.14 can be
solved for the initial x-ray intensity and becomes

1oga(S) () (3.15)
- TN aAugxs ) '

Usually the fraction of the step height that contains the XAFS signal is about .01 for
a step height of one and a reasonable signal to noise ratio is about 100 to 1 so the
number of x-rays needed for each measurement is roughly 2 x 10°. Since I sample
about 22% of these x-rays in the I; ion chamber I need to have a signal in the first

ion chamber due to approximately 5 x 10® x-rays for each measurement of I, and I.

3.3.2 Errors in XAFS Measurements

Besides the random error discussed in Sec. 3.3.1, systematic errors can occur. The
most common source of systematic errors in an XAFS measurement is due to thickness
effects. Thickness effects refers to a group of problems that results in some fraction of
the x-rays that are not uniformly absorbed. The name thickness effects comes from
the most common source of this error a non-uniform sample thickness. This can occur
with a powder sample if the sample is not well mixed with the pressure medium or
if the grain size is large compared to the sample thickness[42]. Other sources of this

same problem can be poor alignment of the sample and the x-rays or x-rays with
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higher harmonic energies. If the sample is poorly aligned then some of the x-rays
will not be attenuated by the sample which results in more absorption in the I; ion
chamber. Therefore ;(E)-x will be smaller because we divide by a signal which is too
large, u(E)-x = In(Iy/Iy).

Similarly, if the harmonic content of the beam is large then the Iy ion chamber
will not absorb many of these x-rays because it is much too thin whereas the I; ion
chamber will absorb them since it is still considered thick. For example, for x-rays
with an energy of 7 keV we can set the absorption coefficients so that 20% of the
x-rays are absorbed by the first ion chamber (Iy), while the sample absorbs 93% and
the last ion chamber (I;) absorbs 95%. In this case the percent of the x-rays absorbed
by each component for the third harmonic, with an energy of 21 keV, will drop to 8%,
14% and 15% for I, the sample and I; respectively. If we further assume that for each
1000 x-rays 20% have an energy corresponding to the third harmonic, then the ratio
of the number of x-rays absorbed in Iy to the number absorbed in I; will be 160:43 for
the fundamental energy (7keV) and 16:24 for the third harmonic. Since our detectors
do not know the energy of the x-rays being absorbed, our signal with 20% third
harmonics goes like 176:67 whereas a pure source without any harmonics would go
like 200:53. Since the quantity that we are actually interested in is u(E)-x = In(Io/Iy)
the total number of photons does not matter but only their ratio. If we scale the ratio
for the signal with harmonics so that the same number of photons are absorbed in I,
for both cases the harmonic ratio goes from 176:67 — 200:76. Now compare the two
ratios. The ratio of the number of x-rays absorbed in Iy:I; in the case where there is
zero harmonics is 200:53 and in the case where there is 20% harmonics is 200:76 so
we find that it is the division by a number that is about 43% too big that diminishes
our XAFS signal.

All errors that belong to the class of “thickness effects” result in a diminished

XAFS signal which leads to inaccurate amplitude factors in the XAFS equation[43].



Chapter 4

NIOBIUM PRESSURE CALIBRANT

I collected the XAFS data for Nb and AgCl together according to the procedure
described in Chap. 3. The main goal for the analysis of the Nb data is to determine
it’s compression. This compression is related to pressure through previously measured
values for the change in volume of Nb with pressure. The resulting pressure is used
as a known extrinsic parameter in the data analysis of AgCl presented in Chapter 6.
Hence, the Nb-data is used as a pressure calibrant for the AgCl-data.

In Sec. 3.2.1 I discussed the choice of a pressure calibrant. As discussed the usual
choices are Cu, Nb, and Ag. Obviously, a Ag calibrant cannot be used with a AgCl
sample. One criteria for the pressure calibrant is that both the calibrant and sample
edges can be reached with the same monochromator crystal (see Sec. 3.1.1). The Nb
calibrant has a k-edge energy at 19 keV which is closest to the Ag k-edge at 25.5 keV
and can be reached with a (400)-monochromator crystal whereas the Cu edge energy
is too low at 9 keV, therefore Nb is our choice.

Sec. 3.2.2 describes the preparation of the Nb powder which I mixed with carbon
grease and placed in the gasket along with the AgCl pellet. In Sec. 3.1.4 T describe the
low temperature apparatus and its use of high pressure nitrogen gas to apply pressure
to the sample. Liquid nitrogen is used to cool the sample to 150K. I collected the
data at the Nb k-edge and at the Ag k-edge at 0, 1500, 1900, 2100, 2300, 2400, 2500,
2700, 2900 and 3100 PSI (pounds per square inch) for the nitrogen gas.

Here I will discuss the determination of pressure from the XAFS determined frac-
tional change in the first nearest neighbor distance. Tabulated values for the fractional
change in volume for Nb at several pressures can be found in Ref. [44]. From each
datum listed in the table, I calculate the fractional change in the first nearest neigh-
bor distance. I show the results, represented by the diamonds, in Fig. 4.1. I have
smoothed the relationship by performing least squares fit which I also show in the
figure represented by the solid curve. The uncertainty in this fit, represented by the
dashed curves in the figure, is caused by the spread in the data points as no un-
certainty in the individual datum were reported. As a result these dashed curves
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represent a minimum uncertainty. Once I determine the change in the first nearest
neighbor distance from the XAFS data, I will use the solid curve in this figure to
convert the fractional change in the first nearest neighbor distance to pressure. For
the error estimation in the pressure I will account for all uncertainties including the
error in this curve and the error in my determination of the fractional change in first
nearest neighbor distance.

The data shown in Fig. 4.1 was determined at room temperature. Using these
results to determine the pressure at 150 K, neglects the temperature dependence of
the compressibility. This results in an under-prediction of the actual pressure. I will
estimate this error in the Sec. 4.3.
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Figure 4.1: The pressure dependence of the fractional change in the first nearest neighbor distance
for Nb. The diamonds represent the experimental results converted from bulk volume measurements
which can be found in Ref. [44]. The line represents the fit to these experimental data and the error
in the line is shown by the dashed lines which is about + 0.5 GPa.

The following is an outline of the analysis procedure:
e Compare the crystal structure of Nb to |x(R)|-data in order to decide how
many paths to include in the theoretical model.
e Compare the |Y(R)|-data taken at different pressures and explain the expected
changes that occur as the pressure is increased.
e Describe the alignment and background removal procedure for the data.

e Describe the parameters varied in the fit of the theoretical model to the data.
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e Determine the pressure independent parameters and then the pressure depen-

dent parameters.
e Convert the fractional change in the first nearest neighbor distance to pressure

as described above.
e Discuss the pressure dependence of the Debye temperature.

4.1 Crystal Structure of Nb

The crystal structure for Nb is body centered cubic (bec)[45]. At ambient pressure and
room temperature the lattice constant a is 3.3004 A[45]. The expected lattice constant
at 150K, the temperature of my measurements, is ¢ = 3.2973 A. I determined this
value using the fractional expansion € = —940 x 107% at 150K from Ref. [44] where
€ = (a150 — a293)/a203, 150 is the lattice constant at 150K, and agg3 is the lattice
constant at room temperature.

I will use parameter €, throughout this thesis to characterize the pressure depen-
dence of the distances determined from my measurements. I have added the subscript
p to distinguish it from the temperature dependent value. In this context, I will drop
the negative sign and refer to it as a fractional compression.

4.1.1  Fourier Transform as a Finger-Print

The magnitude of the Fourier transform of the x(k) can be considered a finger-print
for a particular local structure. I described the Fourier transform procedure of XAFS
data in Sec. 2.2.2. From the XAFS Eq. 2.10 the position of the peaks in |x(R)|-data
are related to the half-path length. Here only single scattering paths are considered,
so that this distance is equivalent to the bond length between the atoms. The XAFS
equation also prescribes that the peak height is related to the number of atoms with
the same bond length and the relative mean square deviation in the bond length, o?.
Examples of |Y(R)| for Nb at several pressures are shown in Fig. 4.2. T have labeled
the peaks from the first three coordination shells. These data were obtained using
the Fourier transform parameters and data ranges listed in Table 4.1.

If the central atom is placed at the center of the bce unit cell, the atoms which
contribute to the the first three shells are located at: (a) the corners of the unit cell,
(b) the center of each of the 6 surrounding unit cells, and (c) the 4 far corners of each
of the six surrounding unit cells. The distances to each of these shells are given, in
terms of the unit cell dimension a, by r; = \/§-a/ 2, 1o =a and r3 = \/ﬁ-a/ 2. Using
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Figure 4.2: |x(R)| at 0, 4, 5, 11 &+ 1 GPa for Nb. Left panel: I show the full R-range and I have
labeled the peaks due to the first three shells of atoms. That there are no significant changes in
|X(R)| implies that Nb does not undergo any phase transitions in this pressure range. Right panel:
An enlargement of the tip of the 15 shell peak. As the pressure is increased the amplitude of the

15¢ shell peak increases and the peak moves to lower R.

Table 4.1: Fourier transform parameters along with fit and data ranges for Nb. A detail description
of these parameters can be found in Sec. 2.2.2. The fit range is listed in R-space. The data range
is listed in k-space. The Fourier transform parameters including the k-weighting, the window type

and the sill widths dk are listed.
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the previously determined a for ambient pressure and 150K, I find that ry = 2.8555
A, r, =3.2973 A and r5 = 5.4679 A. From these distances the first and second shells
are separated by only 0.4 A whereas the second and third shells are separated by 2.1
A. As shown in the |Y(R)| data (Fig. 4.2) the peaks caused by the first and second
shells overlap because of their small radial separation whereas the peak caused by
the third shell is well separated from the first two. Since the first and second shells
overlap in R-space both are included in the theoretical model. The contribution from
the third and higher shells do not overlap in R-space so they can be left out of the fit
without loss of accuracy.

4.1.2  Pressure Dependence of |X(R)|

I have included in Fig. 4.2 data sets at ambient pressure and at the maximum pressure
as well as at two intermediate pressures. Since the gross features, including the
peak positions and heights, are about the same for each data set I conclude that no
structural change has occurred and all data sets represent the bcc structure. The
right panel of Fig. 4.2 shows only the top of the first peak. In this panel it is evident
that the peak position moves to lower R values and that the peak height slightly
increases as the pressure is increased. These trends are expected and have a physical
interpretation. The increase in pressure compresses the Nb resulting in shorter bond
lengths therefore the peak positions move to lower R values. The increased pressure
results in steeper atomic potentials which corresponds to a decrease in the relative
mean-square displacements between the atom pairs, the 02 term in Eq. 2.10, resulting
in an increase in the peak height. As you can see from the data the increase in the
peak height is just slightly outside the noise level in the data. This noise level can be
estimated by comparing the variation in amplitude of the |Y(R)| at large R shown in
the left panel.

4.2 Alignment and Background Removal

A detailed discussion of the alignment and background removal procedure can be
found in Sec. 2.2.1. Here I will state the important parameters used in this procedure
and show an example of the results. As outlined in Sec. 2.2.1, the value for the Fermi
energy, Eg, is set to 45% of the step height at 18983 + 1 eV in the normalized and
aligned data and Ry, parameter is set to 1.8 A. Given these parameters, AUTOBK
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finds the resulting spline of 19 knots, as indicated by Eq. 2.31, which it subtracts from
the data to isolate the XAFS signal. An example of the p(E)-x-data and -background

for Nb at ambient pressure is shown in Fig. 4.3.

X

05 | EO data .

—— background

) . . .

0.0
18800 19300 19800
Energy (eV)

Figure 4.3: p(E)x-data and background function for Nb at ambient pressure and 150K. Eg, the
Fermi energy, is labeled and was set to correspond to 45% of the step height.

At each sampled pressure at least two complete sets of data are collected. After
they are aligned and the background is removed, the resulting x(k) data for the same

pressure are averaged to reduce shot-noise. An example is shown in Fig. 4.4.

4.3 XAFS Parameters and Meaningful Parameters

As we discussed in Sec. 4.1.1 the first two shells are included in the theoretical model.
Many of the XAFS parameters for these two shells are related in a fundamental way.
A detailed discussion of all possible XAFS parameters can be found in Sec. 2.2.4. The
basic parameters needed for these fits are S, AEy’, 62 and Ar;. In this picture there
are a total of 7 parameters. They are SZ, AE,', AE?, 02, 02, Ar; and Ar, where the
script 1 and 2 refers to the parameters for first and second shells respectively.
Several of these parameters can be physically related reducing the number of fit
parameters. The first physical relation is caused by the uniform compression of the
Nb sample. Since Nb has cubic symmetry, each bond length is expected to compresses
by the same factor therefore Ar; = —e,Trer; Where 7., is the initial reference bond
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Figure 4.4: Averaged x(k)k® data are shown with the thick line. The individual contributions are
shown with dashed lines. These data are weighted with k% to emphasize the high k region where the
differences are largest just so we can see the differences.

length and ¢, is the fractional compression and is defined as:

€ = Tref; — ri' (4.1)
Tref;

In this way, the best-fit value for a single parameter ¢, determines both bond lengths.
The second physical relation is for the relative mean-square displacements between the
atoms pairs; this is a relationship between the values for 62 and o2. The relationship
is made through the Einstein or Debye model. Both of these models are included in
FEFFIT. Theses models depend on the reduced mass of the atoms, their separation,
the temperature and a Debye or Einstein temperature. FEFFIT is given the first two
parameters from FEFF and since the temperature is known there is only a Debye or
Einstein temperature as a variable in the fit, denoted as Opepye Or Ogins respectively.
As long as the relative stiffness of the bond between the atoms is about the same, one
Debye or Einstein temperature can be used to determine each o?. This is expected
to be true for Nb were all the atom are of the same type and is discussed in more
detail in the following subsection. Through the use of these physical constraints the

original 7 fitted parameters are reduced to 5. They are €,, Opebye, AE,® and S2.

As described in Sec. 2.2.4 when I consider each constraint, the reduced-chi squared
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is compared with the constraint to the value without the constraint. In each case
where I have chosen to use the constraint it does not decrease the quality of the
fit. Seldom does the constraint actually improve the quality of the fit since I am
restricting its freedom. The constraints are an important implication of real physical

relationships that are often necessary to extract meaningful parameters.

Pressure and the Debye Model

For temperature studies, a single Opebye OT Orins is often used to predict the temperature
dependence of o2 for a particular shell. In this case it is important to choose the model
carefully. Numerous paper have been written explaining different systems in which
either the Debye or Einstein models have worked best[46,47].

The pressure dependence of o2 is not described in this way. For pressure mea-
surements, the temperature is a constant and Opepye Or Orins changes for each pressure
point. This change in @pepye Or Ogins describes the change in the phonon cutoff fre-
quency for the atom pairs as the pressure is increased. The Griineisen relationship
predicts that Opepye should increase linearly with the compression, €, which is defined

in Eq. 4.1. The slope of this relationship is related to the Griineisen parameter, v,
and is defined [32] as:

ODebyeO - ODebye

= —376p. (4.2)
ODebyeO
The Debye model is used here because the phonon frequencies scale linearly with

0Debye;
kBeDebye = thebye; (43)

where kg is Bolzmann’s constant, i is Planck’s constant and, wpesye is a measure of
the maximum phonon frequency. Because of the Griineisen relationship to the Debye
model, I use it to predict the pressure dependence of o?.

In this way, the Debye model is used to characterize the stiffness of the bond
between atom pairs. Therefore if the sample has more than one type of atom or if
the bond length changes by more than 0.5 A a different Debye temperature should
be used to distinguish between the different types of bonding [48].

The Griineisen parameter does depend on temperature. At temperatures larger
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than Opepye the Griineisen parameter reaches a different constant value than that found
a temperatures much less than fOpenye. Examples of the temperature dependence of

Griineisen parameter can be found in Ref. [32].

Often a different kind of Griineisen parameter is reported from XAFS measure-
ments which is defined in terms of o2 as
os —o?

o2 = —6ep. (4.4)

This relationship holds as long as the temperature is much greater than Opepye. In

this limit o2 is related to w by

s _ knT
M, -w?

o (4.5)
where kg is Boltzmann constant, M, is the reduced mass of the atom pairs and T is the
temperature. For all temperatures the relationship is more complicated, written [13]
as:

h 1
o? = [ = + 1] (4.6)
M,w | exp —kB‘f’T -1

The general relationship between o2 and the Griineisen parameter becomes

Ao? h 1
7 = —3’)/ [1 —+ w kBT <exp T ):| €p- (47)

kp'T

For example, the large term in parenthesis becomes 1.49 for a Ag—Br bond at 150
K with a Opepye = 200 K. To determine this value I calculate w from Eq. 4.3. This
illustrates that the ratio between i—‘f and %{j‘;ﬁ become more similar at lower tem-
peratures as compared to the factor of 2 in Eq. 4.4 obtained in the high temperature

limit.

Pressure and Compressibility

As I stated in the introduction, the data shown in Fig. 4.1 was determined from room
temperature measurements. Using these data to determine the pressure at 150 K

neglects the temperature dependence of the compressibility, x which is defined as the
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change in volume per change in pressure times one over the initial volume, written as

1 AV
= ——. 4.
X=Vap (48)
The compressibility can also be related to several thermodynamic quantities,
ayV
= 4.9
X=2a (4.9)

where o, is 3 times thermal expansion coefficient, V is the volume per mol, v is
the Griineisen parameter and, C! is the lattice contribution to the specific heat.
Table 4.2 lists these parameters for Nb at 298 K and 100K from which I calculate the
fractional change in the compressibility Xs00/X100 = 1.02. This indicates that using
the compressibility measurements at room temperature to determine the pressure at
150K results in a 2% underprediction in the pressure, which as I will show in Sec. 4.6
is well within my 10% uncertainty in the determination of the pressure.

Table 4.2: Parameters used to calculate the compression of Nb.

‘ Parameter 100 K 298 K Reference‘

o, (10°°/K) 141  21.3 [44]
V (em®/mol)  10.78  10.82 [44]
Cl (J/molK) 174  24.3 [49]

v 1.49 158 [49]

4.4 Determination of S}

An initial step in the analysis is to determine the value for S, the passive electron
amplitude reduction factor. A detailed description of this parameter can be found
in Sec. 2.1.2. As I discussed in Sec. 2.2.4, the amplitude terms S2 and o? are highly
correlated. The k-weighting I use in the Fourier transform of x(k) influences the
values found for these amplitude terms since S3 and o7 have different k¥ dependencies:
SZ does not depend on k while the o7 is a decreasing exponential in k? (see Eq. 2.10).

The change in the |Y(R)| is quite obvious therefore I show an example of |x(R)| for
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Nb at ambient pressure and 150K determined from the Fourier transform of x(k)k”
with k-weightings, w = 1,2 and 3 in Fig. 4.5. The Fourier transfrom procedure is

discussed in Sec. 2.2.2. Because of the different k£ dependencies of the amplitude
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Figure 4.5: |x(R)| data for Nb at ambient pressure and 150K. From left to right the k-weighting
of the x(k)k" data is varied as w = 1,2 and 3. The physical parameters should not depended on
the k-weighting and therefore we often fit all three sets of data to the same theoretical model. This
method is most useful in determining amplitude terms such as S§ and o2 as shown in Fig. 4.6.

terms it can be used to break their correlation. To demonstrate this correlation, I set
the value for S2 to 0.7, 0.8, 0.9 and 1.0 and, set the value for the k-weighting, w, to 1,
2 and 3. Then I find the best-fit value for fpenye for each of these combinations of S
and w (0? is determined through the Debye model). In this way I have 12 different
fits to the data. I show the best-fit results for @pepye in Fig. 4.6 for each of these
combinations. The lines connect the values found for each k-weighting. The point
were the three lines intersect at approximately Opehye = 350 and S2 = 0.77 give the
best-fit values independent of k-weighting. A simpler “short cut” is to simply include
all three k-weightings in one fit and determine both S} and Opepye. This is what I will
call a simultaneous fit with k-weightings of w= 1, 2 and 3. From this single fit I get
a similar result: Opepye = 344 £ 10 and S3 = 0.76 £ 0.03. The “short cut” method
gives results that are consistent with the long 12-fit method, therefore the “short cut”
will be used throughout this thesis.

Another parameter that can be used to break the correlations between the ampli-
tude terms is the pressure: S3 has no pressure dependence while Opepye is expected to
increase as the pressure is increased as I discussed in Sec. 4.3. Here the “long method”
would be to repeat the process described above for the data at each pressure and then
to average the resulting S3-values. Another option is to simply use the “short cut”
and simultaneously fit the theoretical models with one SZ to each of the data sets
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Figure 4.6: Example of using different k-weightings to break the correlation between the amplitude
terms, S and Opebye- Each point on the line represents the best-fit value for fpepye While the value
for S2 was set to 0.7, 0.8, 0.9 and 1.0. The solid, dashed and dot-dashed line connects the best-fit
results for Opebye to data with a k-weight of w= 1, 2 and 3 respectively. The physical parameters
should not depend on the k-weighting and therefore the best value for S} and Opebye is the point
where all three lines intersect at approximately Opebye = 350 and S2 = 0.77.

using a k-weighting of w= 1, 2 and 3. As shown explicit in the previous example
both methods give results which are consistent therefore I only discuss the “short
cut” method. For each data set the total number of pressure dependent parameters
is three: €,, AEy and Opepye. I choose data from 5 different pressures giving a total
of 15 pressure dependent fitted parameters plus the one S2. The resulting best-fit
value for S2 = 0.82 + 0.02, similar to the value found at ambient pressure although
slightly outside the uncertainty. Since this value for S incorporates both the multiple
k-weighings and the pressure dependence of the data it is the more reliable value.
The data ranges and Fourier transform parameters that I used here are listed in
Table 4.1 except for the k-weighing as described above. Examples of the data and

theoretical fits can be found in Sec. 4.6 where the pressure is determined.

4.5 Determination of AE,

Next, I determine an average AEq’. As I discussed in Sec. 2.2.4, it is highly correlated
with the compression, €,. These phase terms have unique k-dependences so that each
parameter can be determined independently. From the XAFS Eq. 2.10 the majority



67

of the Ar dependence comes from the exp(i2kAr) term which is small for small k. An
energy shift depends on the inverse of k, AE = 2EAk/k, which is small for large k.
I have taken the partial derivative of Eq. 2.2 to obtain this relationship. Therefore
energy shifts will dominate at low £ while changes in the bond length will dominate
at high k. So that the fit is most sensitive to changes in energy the low k-region of
the data is emphasized. Therefore a k-weighting of one is used where the Fourier
transform parameters and, data and fit ranges are as listed in Table 4.1. Here I fit
the data at each pressure independently. The value for S3 is fixed at 0.82 & 0.02 as
I determined in Sec. 4.4. Each of these fits contains four parameters: ¢, AEq* and
Opebye With 12 independent points as given by Eq. 2.40. The resulting average value
for AE! = 1.52 4 0.7 eV and AEy? = 3.82 & 1.0 eV. The largest deviation in the
best-fit values for AE,’ is about one eV.

The use of separate energy shifts for the first and second shells is surprising since
Nb is a metal in which the models for neutral atomic potentials and screening of
the core-hole should work well, requiring no additional energy shifts for the second
shell. One indication that the core-hole is not completely screened is the relatively low
value for S? = 0.82 + 0.02 compared to the value of one which represents a completely
screened core-hole (see Sec. 2.1.2). This indicates that there is some charge transfere
which is also indicated by the seperate energy shifts for the first and second shells.
The average x? reduced by a factor of two or more by including the additional energy
shift indicating that they are both needed.

4.6 Determination of Compression and Pressure

The final step determines the pressure dependent parameters: the fractional compres-
sion, €,, and the Debye temperature, Opepye. I show the data and the fitted model
in R-space in Fig. 4.6 at ambient pressure. The vertical lines in this figure represent
the fit range. These fit and data ranges specify 12 independent points per data set
as determined by Eq. 2.40. Our Fourier transform parameters are listed in Table 4.1.
I list the resulting best-fit values in Table 4.3 in terms of the change in the first
nearest neighbor distance and fpepye along with the goodness-of-fit parameters. A
description of the goodness-of-fit parameters can be found in Sec. 2.2.4. The pressure
depence of €, and Opepye are discussed in the following subsections. For completeness
I have listed the pebye and the corresponding values for o7 as a function of pressure
in Table 4.4.
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Figure 4.7: The left panel and right panels show the |¥(R)| and Imx(R) for the data and the
theoretical fit for Nb at ambient pressure and 150K. The individual contributions for each shell are
shown in the left panel. The fit range is indicated by the vertical lines. The Fourier transform
parameters are listed in Table 4.1.

Table 4.3: Fit results for Nb listed in terms of the first path parameters: the change in the half
path length, Ar; and the mean-square displacement of the path, 0% along with the goodness-of-fit

parameters: X2 and R-factor. The reference value for the first nearest neighbor distance found at

ambient pressure is 2.867 + 0.004 A.

‘PSI Ar; (A) Opaye (K) X2 R—factor‘
0 00002) 318(8) 25 02
1500 -0.012(1) 319(6) 3 0.2
1900 -0.022(1) 319(8) 24 0.4
2100 -0.027(1) 325(5) 7 0.1
2300 -0.026(1) 328(12) 522 0.7
2400 -0.036(2) 328(10) 400 0.6
2500 -0.038(2) 328(12) 233 0.2
2700 -0.037(2) 307(11) 264 0.9
2000 -0.048(2) 332(13) 459 0.7
3100 -0.052(2) 322(10) 341 0.3
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Table 4.4: List of 0? and the corresponding Openye for Nb.

Pressure (GPa) Opepye (K)  of (A%) o2 (A?) |
0 321(13)  0.0033(5) 00037(5)
2.3 322(12)  0.0033(5) 0.0037(5)
4.2 324(12)  0.0033(5) 0.0037(5)
5.2 327(13)  0.0032(5) 0.0036(5)
4.9 325(15)  0.0031(5) 0.0035(5)
7.0 333(15)  0.0031(5) 0.0035(5)
7.3 310(12)  0.0034(5) 0.0038(5)
7.2 305(17)  0.0035(5) 0.0039(5)
9.4 311(16)  0.0034(5) 0.0038(5)
10.2 322(14)  0.0032(5) 0.0036(5)

Sample Pressure

Finally, I calculate r;/ry and determined the pressure. Our best-fit value for ry, the
first nearest neighbor distance at ambient pressure, is 2.867 4+ 0.004 A which differs
from the expected value of 2.856 A, calculated using the room temperature value[45]
using the coefficient of linear expansion[44] in Sec. 4.1.1. The difference, 0.011 A, is
outside of our uncertainty of 0.004 A although an error of 0.011 A for the absolute
value of a distance is quite typical for XAFS measurements. This disagreement is
not a serious problem since it is certain that our best-fit value for the first nearest
neighbor distance corresponds to ambient pressure and 150K therefore it becomes
an offset which does not effect the fractional change in the distance as a function of
pressure. We will use the best-fit value for ry = 2.867 + 0.011 A at ambient pressure
to calculate r/ry with an error given by

@G

The results can be found in Table 4.5 with the corresponding pressure determined

through the solid curve discussed in the introduction as shown in Fig. 4.1. Fig. 4.8
shows the results for the pressure within the sample as a function of the extrinsic

helium pressure.
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Table 4.5: List of extrinsic helium pressure in PSI to intrinsic sample pressure in GPa. The first
nearest neighbor distances from Table 4.3 was converted to the fractional change from ambient
pressure listed as r1/rg. These values were then converted to the intrinsic pressure through the
equation of state data as shown in Fig. 4.1. The error in the final pressure value includes the error
in the equation of state data and the error in determining the change in the first neighbor distance.

|P(PSI) ri/ry, P (GPa)|

0 1.0000(5) 0.0(4)
1500  0.9958(3) 2.3(4)
1900 0.9924(4) 4.2(6)
2100 0.9905(3) 5.2(7)
2300 0.9910(3) 4.9(6)
2400  0.9873(6) 7.0(9)
2500 0.9869(5) 7.3(10)
2700 0.9870(7) 7.2(9)
2900  0.9834(7) 9.4(14)
3100 0.9820(6) 10.2(16)
_| | T T T 1 T T T 1 T 1T T 1 | | |_
10.0 :— }E —:
g | gi
L 50 zzz —
B K3 i
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Figure 4.8: Sample pressure as a function of helium gas pressure measured in PSI.
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Pressure Dependence of 0pepye

As listed in Table 4.3 the pressure dependence of Opepye. is just outside the uncertainties
in our measurement. This is constant with Fig 4.2 where the increase in the first peak
height is just outside the noise in the data, as discussed in Sec. 4.1.2.

As T discussed in Sec. 4.3, the pressure dependence for Openye is expected to be
positive and the relationship between the compression and Openye is determined by
a Griineisen parameter, 7, in Eq. 4.2. Fig. 4.9 shows the fractional change in Opepye
as a function of €, from which v = 0.45+0.19. This indicates that the Nb bonds
are very stiff as there is little pressure dependence of Opepye. As I listed in Table 4.2

0.10 | T I T I
0.05

0.00

0, — 0/6,

-0.05

10
0.000 0.005 0.010 0.015 0.020

€p

Figure 4.9: The Griineisen relationship for Nb. The solid line represents a least squares fit to the
data resulting in v = 0.49 £ 0.19 where the slope of this line is -3 as given by Eq 4.2. The dashed
line represents a vy = 1.49 reported in Ref. [49] for Nb at 100K.

previously measure value for «y is 1.49 from Ref. [49] which is quite a bit larger than
my measured value at 0.45 & 0.19. The dashed line in Fig. 4.9 represents a y of 1.49.

Several Debye temperatures are listed in Ref. [50]. The values for pepy. are: 241
+ 13 K at 0 K, 260 at 298 K both from specific heat data, 340 K at 0 K from
Lindemann’s Equation and 328 K at 298 K from Elastic Constants. Our result for
Opebye = 318 = 8 K at 150 K and ambient pressure is slightly more consistent with

the last two measurements.



Chapter 5

THE B1 TO B2 PHASE TRANSITION OF RBCL

5.1 Crystal Structure of RbClI

A phase diagram for RbCl is shown in Fig. 5.1[8]. The dashed line at room tem-
perature corresponds to the part of the phase diagram which T have sampled. The
low-pressure Bl-phase has the NaCl-type structure. The high-pressure B2-phase has
the CsCl-type structure. As shown in the phase diagram, the crystal structure at

1200 T | T | T T

— - Liquid b
L 900 |- g =
5 L i
2 C i
g 600~ By B2 N
S i i
2 N hase hase .
£ 300 - P P —
'_ - —

0 I /A W I

0.3 0.5 0.7 0.9 1.1

Pressure (GPa)

Figure 5.1: Phase diagram for RbCl. The B1l-phase has the NaCl-type structure. The B2-phase has
the CsCl-type structure. A cartoon of these structures can be found in Fig. 5.2. The dashed line
represents the part of the phase diagram which I have sampled.

room temperature is expected to transform from the B1 to the B2 phase at approxi-
mately 0.55 GPa. I show a cartoon of theses structures in Fig. 5.2. The shells I used
in the theoretical models are listed in Table. 5.1. The model for the B1-phase includes
the first three shells extending about 5 A from the absorbing atom. The model for the
B2-phase includes the first four shells extending about 6 A from the absorbing atom.
No multiple scattering paths are needed to describe the data to these distances.
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Figure 5.2: A cartoon of the B1 and B2 phases of RbCl are shown in the left and right panels,
respectively. The larger open circles and the smaller shaded circles represent the Rb and Cl atoms,
respectively. The bonds between the atoms are a guide the eye. The left cartoon shows one unit cell
while the right shows three smaller unit cells. I have labeled the central Rb atom with the letter
¢, and an atom from each shell included in the model with a corresponding number based on its
distance from the central atom. Table. 5.1 lists the shell’s radial distance from the central Rb atom
and degeneracy of the shell.
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Table 5.1: List of paths for the B1 and B2 phases of RbCl. The subscripts on the atom types
correspond to the labels in the cartoon for the structures shown in Fig. 5.2. The reference bond
lengths and the degeneracy of each shell are listed.

‘Phase Shell Atom type Ruef (A) N‘

B1 1 Rb.—Cly 3.295 6
2 Rb.—Rby,  4.660 12
3 Rb.—Cl; 5.707 8

B2 Rb.—Cly 3.401 8
Rb.—Rby  3.927
Rb.—Rbs 5.553 12

Rb.—Cly 6.511 24

=W N
D

5.1.1 Fourier Transform as a Finger Print

The magnitude of the Fourier transform of the x(k) can be considered a finger print
for a particular local structure. A detailed explanation can be found in Sec. 4.1.1 and
a description of the Fourier transform procedure in Sec. 2.2.2. The |Y(R)| are split into
three sets. The first set consists of the data measured at pressures below 0.5(1) GPa,
corresponding to the Bl-structure. The second set consists of data corresponding
to the structure at the transition. The third set consists of data measured above
0.6(2) GPa, corresponding to the B2-structure. Examples of |x(R)| for RbCl from
the Bl-phase, the intermediate region, and the B2-phase are shown in Fig. 5.3. These
data were obtained using the Fourier transform parameters and data ranges listed in
Table 5.2. As shown in Table 5.1 the second Rb—Rb shell has a radial distance of
4.67 A in the Bl-phase which decreases to 3.93 A in the B2-phase. This large change
is easily seen in the |x(R)| in Fig. 5.3. The data from the transition region seems to

have a contribution from both of these shells suggesting a mixture of both phases.

5.2 Alignment and Background Removal

A detailed discussion of the alignment and background removal procedure can be
found in Sec. 2.2.1. Here I give the important parameters used to remove the back-
ground and show an example of the results. As outlined in Sec. 2.2.1, the value for the
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Figure 5.3: |x(R)| for the Bl-phase, transition region, and B2-phase of RbCl. I have labeled the
second shell for the B1 and B2 phases. The transition region | (R)| seems to have some contribution
from both of these shells.

Fermi energy, Eg, is set to 68% of the step height at 15185 & 1 €V in the normalized
and aligned data, and the Ry, parameter is set to 1.8 A. Given these parameters,
AUTOBK finds the resulting spline of 15 knots as determined by Eq. 2.31, which it
subtracts from the data to isolate the XAFS signal. An example of the p(E)-x data

and background for RbCl at ambient pressure are shown in Fig. 5.4.

Two consecutive measurements are taken at each pressure. Except at the onset of
the phase transition, differences between separate measurements of u(E)x at a given
external pressure are small and dominated by shot noise. Typically, they are averaged
to increase the signal-to-noise ratio. The resulting x (k) for two measurements of
p(E)x taken at the same external pressure are shown in Fig. 5.5. As shown in the
top panel the differences are purely caused by statistical noise and therefore, these
data are averaged. The resulting x (k) for two measurements of y(E)-x taken at the
onset of the phase transition are shown in the bottom panel. The relatively large
difference between the data sets made it necessary to analyze each separately. Only
at the onset of the phase transition was there any significant difference between the
two measurements taken at the same applied pressure. This becomes important in
the interpretation of the mechanism for the phase transition and will be discussed
further in Sec. 5.6.
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Figure 5.4: Data and background for RbCl at ambient pressure and room temperature. Eg, the
Fermi energy, is set to 68% of the step height.

5.3 Overview of Fit Procedure

This is an overview of the fit procedure, which is described in detail in the next few
sections. First I determine the XAFS parameters for the data corresponding to the
B1- and B2-phases. The goal is to parameterize as many variables as possible so that
few free parameters are needed to model the data at the transition as a mixture of
both phases. These steps include:

e Determine the parameters which do not depend on pressure, SZ and AE,".

Reduce the fitted variables AE to a single AE,.

Determine the pressure dependent parameters, p, fpebye;, and Cs.

Relate Opepye; and C3 to the pressure.

In the end, only two variables will be needed to determine the model for each
phase, AE; and p. Even with this reduction in the number of fitted parameters,
the transition region will need four fitted parameters, a AEy for each phase, p the
pressure, and the fractional amount of the B1 phase xg;. The fractional amount of
the B2 phase, xgo, is given by 1 - xg;. In each of these fits the data range, fit range,
Fourier transform parameters and the corresponding number of independent points
are as listed in Table. 5.2 unless otherwise specified.
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Figure 5.5: A comparison of consecutive x(k)%? data. Panel(a): at 0.8(1) GPa. Panel(b): at the
onset of the phase transition.

Table 5.2: Fourier transform parameters along with fit and data ranges for RbCL

A detailed

description of these parameters can be found in Sec. 2.2.2. The fit range is listed in R-space. The
data range is listed in k-space. The Fourier transform parameters including the k-weighting, the
window type and the sill widths dk are listed. The number of independent points is also listed as
determined by Eq. 2.40.

| Phase R-range (A) k-range (A™') Window dk(A™!) k-weighting Nigp |

B1
B2

[2.3:5.3]
[2.3:6.0]

[2.0:9.0]
[2.1:9.0]

Hanning
Hanning

1.5
1.5

2
2

15
17
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5.4 Analysis of the Pure B1- and B2-Phases of RbCl

In this section I will discuss the analysis of the data from the pure phases of RbCl.

5.4.1 XAFS Parameters and Meaningful Parameters

As we discussed in Sec. 5.1.1 the first three shells are included in theoretical model for
the Bl-phase. A detailed discussion of all the parameters can be found in Sec. 2.2.4.
The parameters needed for these fits are S3, AEy’, o7, C§ and Ar;. In this picture
there are a total of 11 parameters for the Bl-phase where the third cumulant C% was
determined to be important for the third shell alone.

The first four shells are included in the theoretical model for the B2-phase. The
parameters I needed for these fits are the same as for the Bl-phase except that the
third cumulant was determined to be important for the first and fourth shells.

Many of the XAFS parameters for these shells are related in a fundamental way.
The first relationship connects each bond length to a fractional compression which
I discussed in Sec. 4.3. Here I extend this relationship by relating the fractional
compression to the pressure. Therefore I replace the fitted parameter ¢, by p. In
this way, the best-fit value for a single parameter p determines each bond length. I
describe the details involved in this change in variables in the following subsection.
The second relationship connects o of each shell to a Debye temperature, Opepye, With
the Debye model as discussed in Sec. 4.3.

Pressure and Compression

I directly substitute the change in path length parameter Ar, for the pressure p. To
do this, T use the data from Ref. [7] which gives the fraction of volume for RbCl as a
function of pressure. From these data, I convert the fractional change in volume to

the fractional change in lattice constant. Assuming cubic symmetry, the volume is

Sv
da

o _1 (&> +1 (5.1)

Qg 3 Vo

proportional to the lattice constant cubed. Therefore & = 3a? and the final expression

1s written as

where ag and vy represent the lattice constant and volume at ambient pressure and
room temperature. Rather than relating the lattice constant, a to the volume, the
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parameters that are more closely related to our analysis are 714 and 71, the first nearest
neighbor distance at ambient pressure and at the unknown pressure, respectively.
Their ratio is also equal to Eq. 5.1 since the proportionality constants cancel. For
example, the Bl-phase has r; = 0.5a and 71y = 0.5aq so r1/711¢9 = a/ay.

Of course, this relationship holds only if r; and r, are from the same phase.
The original table lists the fractional change in volume relative to volume of the B1-
phase at ambient pressure and room temperature. The phase transition itself causes a
15% decrease in volume[7] therefore the data is discontinuous at the phase transition.
Since the change in volume for the B1- and B2-phases after and before the transition
is needed, the data is extrapolated into these regions. To make the change in volume
as a function of pressure continuous, I multiplied the fractional change in volume for
the B2-phase by 1.15 to erase the 15% decrease due to the phase transition. Therefore,
the pressure for both phase can be calculated based on this data with the appropriate
reference value. For the Bl-phase, the reference value is the first neighbor distance
at ambient pressure and room temperature. For the B2-phase, I equate the volume
per chemical formula of 85% of the B1 to the B2 phases at ambient pressure to find
an appropriate reference, rg, for the B2 phase.

1.00

£ f0.97

0.94

P (GPa)

Figure 5.6: The pressure dependence of the fractional change in the first nearest neighbor distance for
RbCI. The diamonds represent the experimental results converted from bulk volume measurements
which can be found in Ref. [44]. The line represents a least-squares fit to these data.

The converted data, represented by the diamonds, are shown in Fig. 5.6. I also
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performed a least squares fit of a cubic equation to these data which is shown in the
figure as the solid line. Finally, I substitute this cubic equation which relates the
lattice constant to the pressure directly into FEFFIT. In this way I have changed the
fitted parameter from Ar to €, and then to p. The equations look something like this:

Ar; = €, * Ryer
AI‘Q = €p % Rfref2
Arg = €p * Rrefs

&= ((A+ Bp+Cp* + D-p3)-%) ~-1
where p the fitted parameter represents the pressure, A, B, C' and D are the coeffi-
cients of the cubic equation shown in Fig. 5.6, R, is the reference path length given
to FEFF, and ry is the path length at ambient pressure and room temperature. I
have written out the Ar; equation for three paths to emphasize that the the single p
determines all the path lengths.

5.4.2 Determination of Sy

As discussed in Sec. 4.4 both the k-weighting and the pressure dependence of the data
can be used to break the correlations between S2 and ODebye-

I simultaneously fit the theoretical models with one S? to each of the data sets
using a k-weighting of w= 1, 2 and 3 for the Bl-phase alone. For each data set the
total number of pressure dependent parameters is eight: p, C3, and AE,’ and ODebye;
for each of the three shells. I have a total of 4 data sets at different pressures giving a
total of 32 pressure dependent fitted parameters plus the one SZ. The resulting best-fit
value for S2 = 0.97 £ 0.03. Previous XAFS analysis of the temperature dependence
of RbCl gave S = 0.96 [51] which agrees with our results.

5.4.83 Determination of AE,

Next I determine AEy. As I discussed in Sec. 4.5, it is highly correlated to a change
in the path lengths. So that the fit is most sensitive to changes in energy the low
k-region of the data is emphasized. Therefore a k-weighting of one is used with the
Fourier transform parameters, data and fit range listed in Table 5.2. Here I fit the
model to the data at each pressure independently. The value for S32 is fixed at 0.97
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+ 0.03 and each of our fits contains eight parameters which are: p, C3, and AEy*
and Opepye; for each shell. The resulting Eo' for each shell is shown in Fig. 5.7. As
shown in this figure the energy shifts behave in a very predictable manor which I
will use to fit the theory to the data at the transition. Namely the relative change
is approximately constant: AEy — AE,'™' ~ Constant. To test this constraint, I
compare the reduced-x? with and without it. The average R-factor and reduced-x?
for these fits, without any constraints on AEq are 1% and 170 respectively. If I change
the variables so that only one energy shift per data set is determined in the fit, say
AE,! and then the other two energy shifts are given by a constant offset from this
value, i.e. AE,' = AEy! + Constant' where the offset for the second shell is -0.43 eV
and the third shell is -2.82 eV. The average R-factor and reduced-y? for these fits are
1% and 130 respectively. Since the reduced-x? decreases slightly this constraint does
not decrease the goodness-of-fit. The expected difference between the x?2 for equally
acceptable models will be within two standard deviations. This can be written as
X2,/x3, — 1 < 24/2/v, where \/2/v is one standard deviation. Comparing our fit
with and without this constraint we have x7,/x%, — 1 = 0.3, which is about 3 times
larger than 2\/2/7 = 1, indicating that the constraint is a better model for the data.
Therefore I will use it to predict the energy shifts for the data at the transition.
Exactly the same procedure is applied to the B2-phase so that only single energy
shift is required. The resulting energy shifts are shown in the bottom panel of Fig. 5.7.

5.4.4 Determination of Pressure Dependent Parameters

The pressure dependent parameters are: the pressure, p, the Debye temperatures for
each shell, fpehye;, and the third cumulant, C3. 1 fit the theoretical model to the
data using SZ = 0.97 4+ 0.02 and AEy" for each shell as determined in Sec. 5.4.2
and 5.4.3, respectively. The Fourier transform parameters, data and fit range are
listed in Table. 5.2. These ranges give a total of 14 independent points per data set
which are fitted with 5 parameters. They are p, Opebye; for each of the three shells,
C3. The best-fit values are shown in Fig. 5.8, represented by the open symbols. As
shown in the figure Opepye; and C3 have an approximately linear pressure dependence.
The next step is to determine these linear relationships so that the pressure can
be related to the appropriate Opepye; and C3 values for the data at the transition.
For comparison with the goodness-of-fit parameters for this next step, the average
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Figure 5.7: Energy shifts for the pure phases of RbCl. Top: energy shifts for the Bl-phase. Bottom:
energy shifts for the B2-phase. The Bl-phase data was taken at 0, 400, 500, and 550 PSI, which is
the external oil pressure applied to the anvils. The B2-phase data was taken at 800, 900, and 1000
PSI. T have shifted the pressure values slightly so that the error-bars from the different shells can be
distinguished from each other.
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Figure 5.8: Pressure dependence of fpebye; and C3 for RbCl. Left: Shows the results for the B1-
phase. Right: Shows the results for the B2-phase. The open and closed symbols represent the best-fit
value as free parameters and with a linear pressure dependence respectively. The closed symbols are
connected by dashed lines, which represent the intercept and slope parameters. I have shifted the
pressure slightly so that the error-bars from the different fits can be distinguished from each other.
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reduced-x? and R-factor for these fits are 60 and 1%.

In a simultaneous fit I determined three intercept points and one slope for fpepye;
of each shell, and an intercept and slope for C3 along with the pressure of each data
set. For comparison the best-fit values determined here are also shown in Fig. 5.8
represented by the closed symbols. The lines connecting these symbols represent the
intercept and slope parameters which were determined by the fit. Both sets agree very
well and the uncertainty in the fitted parameters is reduced by including the linear
pressure dependence. The average reduced-x? and R-factor for the simultaneous fit
are 48 and 1%. Since these constraints do not decrease the fit quality, I will be use
them to fit the theory to the data at the transition. The best-fit value for the pressure,
also determined by this simultaneous fit, is shown in Fig. 5.9.
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Figure 5.9: Sample pressure for the pure phases of RbCl as a function of the external PSI reading
for the oil pressure. The open and closed symbols represent the data from the B1 and B2 phases,
respectively.

The data corresponding to the B2-phase of RbCl is treated in exactly the same
manor. The B2-phase results are shown in the figures described above next to the
results for the Bl-phase. Fig. 5.10 shows the experimental |Y(R)| along with the fitted
theoretical |Y(R)| for the B1- and B2-phases respectively.

For completeness I have listed the fcp1, Orp1 and fc2 and their corresponding
values for o7 as a function of pressure in Tables 5.3 and 5.4 for the B1- and B2-

phases, respectively. Fig. 5.11 shows the Griineisen relationship for 6¢j; of the B1-
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Figure 5.10: The |x(R)| and Imy(R) for the data and theoretical model for RbCl are shown in the
left and right panels, respectively. Top: Data and theory for the Bl phase at ambient pressure.
Bottom: Data and theory for the B2 phase at 0.8(1) GPa. The fit range is indicated by the vertical
lines.

Table 5.3: List of 02-2 and the corresponding fpebye for the Bl-phase of RbCl

Pressure (GPa) | fcin (K) o2 (A?) | Orpt (K) o2 (A?) | O (K) o2 (A?)
0 230(3) 0.024(1) | 163(6) 0.032(2) | 263(12) 0.023(2)
0.2 232(2)  0.023(1) | 164(5) 0.031(2) | 265(12) 0.023(2)
0.3 233(3)  0.023(1) | 166(6) 0.031(2) | 266(12) 0.023(2)
0.4 234(3)  0.023(1) | 166(6) 0.030(2) | 267(11) 0.023(2)
0.5 235(5) 0.022(1) | 167(16) 0.030(5) | 267(20) 0.023(3)
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Table 5.4: List of 01-2 and the corresponding fpenye for the B2-phase of RbCl

0.00

-0.02

-0.04

-0.06

Pressure (GPa) 0Ocn (K) o2 (A?) | Orp (K) o2 (A?)
05 239(4) 0.023(1) | 181(10) 0.046(5)
0.7 246(3)  0.022(1) | 188(10) 0.042(4)
0.8 249(4) 0.021(1) | 192(10) 0.041(4)
Pressure (GPa) fcp (K) of (A%) o2 (A?)
05 171(6)  0.027(2) 0.030(2)
0.7 178(6)  0.025(1) 0.028(2)
0.8 182(6)  0.024(1) 0.027(2)
Bl-phase
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Figure 5.11: The Griineisen relationship for 8c; of the B1- and B2-phases of RbCl are shown in the
left and right panels, respectively. The solid line represents a least squares fit to the data points. The
slope of the line is -3+ as defined by Eq. 4.2 where v = 0.8 £ 0.7 for the Bl-phase and v = 2.4 £ 0.7
for the B2-phase.
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and B2-phases as a function of ¢, the fractional compression. The reference values
are taken from my ambient pressure results therefore the first point is by definition

at the origin.

5.5 Analysis of the Transition Region of RbCl

Most of the proceeding analysis was performed so that the transition region can be
modeled as a mixture of both phases using a minimum number of free parameters.
There are two reasons for doing this. The first is that only a limited number of
variables that can be used to describe the data. The four free parameters are AE,
for each phase, p and xg; as I discussed in Sec. 5.4.1. The second reason is to know if
the data is a mixture of the B1 and B2 phases without additional distortions caused
by the transition mechanism. By parameterizing all the pressure dependent variables
I have constrained o? and Cj to the values predicted by the pure phases. Thermal
and static disorder that is not present in the pure phases is not accounted for in this
model. Therefore any misfit which is greater than that expected from the pure phase
fits gives a measure of this disorder.

5.5.1 Modeled as a Mixture of B1- and B2-Phases

The theoretical model for the data at the transition is based on the mixture of Bl
and B2 structures. Table 5.5 lists the best-fit values for the pressure and the fraction
of each phase along with the goodness-of-fit parameters. This table shows that the
transition starts at a pressure of 0.7(1) GPa as compared to 0.55 GPa which is the
reported value for the phase transition as shown in the phase diagram (Fig. 5.1).
As discussed in Sec. 5.2 two measurements were taken at each pressure point. Only
at the beginning of the transition were any significant differences between the two
measurements taken at each applied pressure. For the data at the transition we have
two sets of consecutive measurements. The first, at the onset of the transition, shows
a large change in crystal structure from 76(4)% to 41(4)% Bl-structure accompanied
by a slight drop in pressure from 0.7(1) to 0.5(1) GPa. This slight drop may be due
to the 15% decrease in volume associated with the change of phase. The next two
measurements, taken at a slightly increased applied pressure, both have 17(4)% of
the B1 phase and the pressure remains at 0.5(1) GPa. We interpret the slight drop in

pressure between the first and next two measurements as evidence of excess pressure
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that is needed to start the transition which has also been reported in Ref. [2].

Fig. 5.12 shows the experimental |Y(R)| for each transition point along with the
theoretical |x(R)| for a mixture of Bl and B2 structures. I have labeled a few of
the most significant changes in the imaginary part with arrows numbered 1, 2, and 3.
Going from the B1 to the B2 phase the features labeled 1 and 3 become less prominent
while the feature labeled 2 is not present in the B1 phase and slowly emerges as the
transition is completed. As shown by these changes in the data the transition from
100% B1 phase to 0% B1 phase are gradual as is expected for this transition where
the Bl-phase is being replaced by the B2-phase. The average reduced-x? for these fits
agrees with those for the pure phases at 25 and 28, respectively. The good agreements
between the theory and data verifies the assumed linear pressure dependence of o2
and Cs. This indicates that the transition is dominated by a simple mixture of the
B1- and B2-type structures and that the amount of disorder in the structure, reflected
by these values is consistent with the applied pressure. These results also show the
transition to be displacive and martensitic-like in agreement with the work of Onodera
et at.[2].

Table 5.5: Best-fit values for the pressure and the fraction of Bl-type structure, xg;, along with the
goodness-of-fit parameters x2 and R-factor for the data at the transition modeled as a mixture of
B1- and B2-type structures.

| P (GPa) xm  x} R-factor |
0.7(1) 0.76(4) 17  0.005
0.5(1)  0.41(4) 20  0.003
0.5(1) 0.17(4) 39  0.016

Test the Model for the B1- and B2-Phase Mixture

To test the mixture of phases model, I apply it to the data for which I expect only
a single phase. Table. 5.6 lists the best-fit values for the pressure and the fraction of
Bl-phase along with the goodness-of-fit parameters using both the mixture of phases
model and the pure phase model described in Sec. 5.4.4. Comparing the best-fit values
of the pressure we see they are within 0.1 GPa, which is our estimated uncertainty for
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the sample pressure. This is strong justification for the procedure used to determine
the pressure for the data at the transition. For the first four data points listed in
Table 5.6, the two-phase fit yield values for xg; that are within 6% of the expected
100%, and for the last three points the two-phase fit yields values for xp; that are
within 1% of the expected 0%. I use the larger value of 6% as my best estimate for
the uncertainty in the extracted values for xg; at the transition. Fig. 5.13 shows a
summary of the best-fit results of xg; for all the data as a function of pressure. From
the figure, the best-fit value for the pressure of 0.7(1) GPa at the first point with
a significant mixture of phases is expected for this type of transition where excess
pressure is required to nucleate the parent (B2) phase. This figure also shows that

the transition is completed within the narrow pressure range of 0.2(2) GPa.

Table 5.6: Best-fit values for data corresponding to the structure before and after the transition for
RbCl modeled as a mixture of Bl and B2 phases. Left side shows the results for a model based
on the pure B1l- or B2-phase. The value for xg; denotes the phase where a 1 corresponds to the
B1 phase and 0 corresponds to the B2 phase. Right side shows the results for a model based on a
mixture of both phases. The best-fit values of pressure and the fraction of Bl-type structure, xg1,
along with the goodness-of-fit parameters x2 and R-factor are listed.

Single Phase Model Mixture of Phases Model
P (GPa) xp; %2 WR-factor | P (GPa) XpB1 x2 R-factor
0.0(1) 1y 75 0.013 0.0(1) 1.01(2) 128  0.007
0.2(1) 1y 35 0.008 0.2(2) 0.96(9) 73 0.006
0.3(1) 1, 27 0016 | 04(2) 0.94(10) 41  0.011
0.4(1) 1y 26 0.007 0.4(2) 0.98(10) 66 0.008
0.5(1) 1, 21 0.006 0.6(2) 0.97(10) 29 0.006
0.5(1) 0 28 0.013 0.5(1) 0.01(3) 37 0.015
0.7(1) 0y 17 0011 | 0.7(1) 0.00(3) 22  0.012
0.8(1) 0f 19 0.012 0.8(1) 0.00(4) 23 0.014

5.5.2 Modeled as a Distorted B1-phase

A detailed description of this intermediate structure can be found in Sec. 6.1. As a
starting point for my fit based on a proposed intermediate structure, I have chosen

reasonable values for certain structural parameters based on the previous results.
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Figure 5.12: The |x(R)| and Im¥(R) data and theoretical model for RbCl at the transition are shown
in the left and right panels, respectively. The fit range is indicated by the vertical lines. I have add
the data for 100% B1l-phase at the top and 0% Bl-phase at the bottom for reference. I have labeled
a few of the most significant changes in the imaginary part with arrows numbered 1, 2, and 3. Going
from the B1 to the B2 phase the features labeled 1 and 3 become less prominent while the feature
labeled 2 is not present in the B1 phase and slowly emerges as the transition is completed. As shown
by these changes in the data the transition from 100% B1 phase to 0% B1 phase are gradual as is
expected for this transition where the Bl-phase is being replaced by the B2-phase.
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Figure 5.13: Fraction of Bl-phase as a function of pressure. Data from the transition region are
shown with closed symbols.

These include values for 02, C5 and AEy, that I have fixed to correspond to 0.7 GPa
as we determined in the mixture of phases fit. The unit cell parameters a, b, ¢, and
[ are treated as fit parameters.

From Fig. 5.14 it is evident that the fit to the data at the transition is poor
relative to the mixture of phases fit (Fig. 5.12). Table 5.7 lists R and x2 along with
the number of independent points in the fit and the number of degrees of freedom in
the fit. Both the R and x? increase as compared to those for the fit based on a mixture
of phases. The expected difference between the x2 for equally acceptable models will
be within two standard deviations. This can be written as x3,/x7, — 1 < 24/2/v,
where \/2/7 is one standard deviation. Comparing our intermediate phase fit to the
mixture of phases fit we have x7,/x%, — 1 = 21, which is about 27 times larger than
24/2/v = 0.78, indicating that the intermediate phase model is incorrect.

For comparison, Table 5.8 lists the fit results for the both models. The most no-
table difference between the two structures is in the coordination number of each shell.
In general, the paths from the B2-phase are not reproduced with enough degeneracy
in the intermediate structure fits. This leads to a large under prediction of the data
in the regions where the B2 phase contributes significantly in the mixture of phase
analysis.

Finally, I allowed the unit cell parameters, the position of the atoms within the
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left and right panels, respectively. The model based on the KOH-type structure is a constrained so
that the Opebye and Eg values are consistent with the results for the pure phase.

Table 5.7: Comparison of the goodness-of-fit parameters, x2 and R-factor, along with the degrees
of freedom in the fit for the model of a mixture of B1 and B2-phases (41(4)% B1 phase) and the
intermediate structure at the transition.

‘ Structure ~ Variables Ny, X2 R-factor ‘
Intermediate 4 17 452 0.172
B1 and B2 4 17 20 0.003
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Table 5.8: Comparison of the intermediate and mixture of phases models for the transition region
of RbCl. Left panel: lists the best-fit values using a model based on a mixture of B1 and B2 phases
with xg1 = 0.47(6)%. Right panel: lists the best-fit values using a model based on a KOH-type
structure. Here o2 was set to correspond to the values predicted for the transition as determined
from the mixture of phases model. The unit cell parameters: a, b, ¢ and 8 were determined in the
fit.

Mixture of B1 and B2 phases Restricted KOH-type structure
Atom type N Ry (A) o? Atom type N Ry (A) o2
Rb—Cly; 6 3.26(1) 0.0225(3) | Rb—Cl 1 3.08(13) 0.0224

Rb—Cl 2 3.29(3) 0.0224
Rb—Clg, 8 3.37(1) 0.0227(7) Rb—Cl 1 3.30(3) 0.0226
Rb—Cl 2 3.33(14) 0.0226

Rb—Rbg, 6 3.89(1) 0.0269(12) | Rb—Rb 2 3.91(6) 0.0268
Rb—Rbg; 12 4.61(1) 0.0298(5) | Rb—Rb 2 4.54(18) 0.0297
Rb—Rb 2 4.60(11) 0.0297
Rb—Rb 2 4.64(6) 0.0297
Rb—Rb 2 4.75(14) 0.0297
Rb—Rbg, 12 5.50(2) 0.0304(13) | Rb—Rb 2 5.25(13) 0.0303
Rb—Clg; 8 5.61(1) 0.0226(2) | Rb—Cl 1 4.95(13) 0.0225
Rb—Cl 1 5.09(9) 0.0225
Rb—Cl 2 5.66(12) 0.0225
Rb—Cl 2 5.78(13) 0.0225

Rb—Clg, 24  6.45(2)  0.0463(19)
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unit cell, two Debye temperatures and two energy sifts to vary. Here I had a total
of 12 parameters and 14 independent-points and the correlation between the position
variables is quite high, around 85%. I was able to obtain a comparable fit for the
data at the mid-transition point which we labeled at 45% B1-phase using the previous
model. The data from the other two points were not reproduced using this model.
Using the method described above for comparing two models, these fits are 9, 2.5, and
16.5 standard deviations worse than the mixture model. Clearly, only the midpoint
can be considered a “reasonable” fit. For this model I obtained best-fit values for
o? that where about half of that predicted by our linear extrapolation method. This
large change in the bond stiffness is highly unlikely and the fact that no “reasonable”
fit was determined for the other two points suggests that this structure is not correct.
Another indication that this model is not correct is that the intermediate model is
reported to have an angle = 101° which to obtain our “reasonable” fit became 90(1)
degrees. This is consistent with a completely different type of distortion. I describe
the original KOH-type distortion in detail in Sec. 6.1. For completeness I show the
R-space data and the best-fit of the model where all 12 parameters were optimized
in Fig. 5.15.

5.6 Conclusions

From the fits to the data at the transition we deduce the following properties of the
phase transition. First the data were determined to be consistent with a mixture
of phases and not with the intermediate KOH-type structure. Second, the phase
transition requires an excess pressure at the onset of the transition of 0.2(1) GPa.
Once the transition starts the system relaxes to a pressure of 0.5(1) GPa which re-
mains approximately constant until the transition is complete. This is expected in
a martensitic-like transition where the nucleation of the parent (B2) phase requires
excess pressure. This also explains why the previously reported values for the transi-
tion pressure may be slightly low. Third, because the best-fit values for the ¢%’s and
Cj5’s of each shell in the single-phase regions were used to parameterize their pressure
dependence and this pressure dependence was used in the model of the data at the
transition, it follows from the success of these fits that the structural disorder is no
larger at the phase transition than in the single-phase regions. From these results we

conclude that the phase transition is consistent with a martensitic-like interpretation.
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Figure 5.15: The |Y(R)| and Imy(R) for the transition data and the theoretical fit for RbCl are
shown in the left and right panels, respectively. The model is a distortion of the B1l-phase based on
the KOH-type structure where fpenye and Eq; are not constrained.



Chapter 6

LOCAL STRUCTURE OF AgCl UNDER PRESSURE

As discussed in Ch. 1, pressure induced changes in the crystal structure of AgCl
are interesting since they differ from the well studied class of alkali halides with the
NaCl-type structure called the rock-salts. Both the rock-salts and AgCl have B1-phase
structure (NaCl-type) at ambient pressure but AgCl does not directly transform to
the usual high pressure B2-phase structure (CsCl-type) as the rock-salts do. Instead
the diffraction pattern becomes complicated with the appearance of many broad lines

indicating a crystal structure with lower symmetry and possibly disorder[1].

800

HPPIII
600 r b

€ 400 | LPPI
[
/ HPPI | HPPII
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Figure 6.1: A phase diagram for AgCl[1], only the solid to solid phase transitions are shown. The low
pressure phase I (LPPI) represents a NaCl-type structure or Bl-phase of AgCl. The high pressure
phase I (HPPI) represents a KOH-type structure. The high pressure phase II (HPPII) represents a
TlI-type structure. The high pressure phase ITT (HPPIII) represents a CsCl-type structure or B2-
phase of AgCl. The formation of the two intermediate phases between the B1 to B2 phase transition
differs from that of the well studied rock salt structures. The phase diagram has been extended to
low temperatures represented by the dashed lines.

The phase diagram of AgCl is shown in Fig. 6.1. This diagram was proposed
as a result of recent energy dispersive x-ray diffraction work[1]. The B2-phase of
AgCl is stable at very high pressures and temperatures after the formation of two
distinct intermediate phases which are referred to as high pressure phase I (HPPI),
KOH-type, and the high pressure phase II (HPPII), Tll-type. In the diagram the high
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pressure phase IIT (HPPIII), CsCl-type structure, corresponds to the B2-phase. I have
extrapolated the transition lines in the phase diagram, indicated by the dashes, to
low temperatures as these measurements were made at 150 K. Although the structure
type and unit cell dimensions have been determined at each transition and at room
temperature|[1] the crystal structure has not been completely determined since the
position of the atoms within the unit cell are unknown. This is because it is difficult
to determine the absolute intensity of the diffraction peaks due to the variation in the
intensity of the x-ray source with wavelength. This creates an unique opportunity for
XAFS spectroscopy which can determine the local structure given the space group
and unit cell dimensions from the x-ray diffraction study[1].

6.1 Topological Relationship

A “topological” relationship between the different structural phases of AgCl was pre-
sented in Ref.[1]. The idea is that the most primitive of the space groups, the KOH-
type for HPPI, can be used to reproduce each of the other structures. For example,
the Bl-type structure can be reproduced from the KOH-type space group with spe-
cial restrictions on the lattice constants and atomic positions. The top left panel of
Fig. 6.2 shows a diagram of the usual Bl-type unit cell for AgCl at ambient pressure.
The special KOH-type unit cell is outlined in this figure and shown by itself in the
top right panel. The table following the diagrams lists the parameters necessary to
reproduce the Bl-phase structure in terms of both space groups. As listed in this
table the unit cell dimensions as well as the position of the atoms within the unit cell
are needed to define this “topological” relationship.

The “topological” relationship between the KOH-type structure and the TlI-type
structure is not as well defined since the placement of the atoms within the unit cell
are unknown. As a starting point for the determination of the atomic positions, I will
assume, as in Ref. [1], that they are the same as for the KOH and TII structures[45].
I will refer to this structure as the starting model. A diagram of these structures
is shown in Fig. 6.3 and Fig. 6.4 for HPPI and HPPII, respectively. These starting
models are based on the space group and unit cell dimensions as determined from
diffraction[1]. Since they could not determine the placement of the atoms within
the unit cell they are assumed to be the same as for KOH and TII structures. The
TlI-type structure as shown for the starting model can be reproduced using the KOH-
type space group, forming a “topological” relationship. To demonstrate how these
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Structure Type NaCl KOH
Space Group Fm3m P2;
Unit Cell a = 5.320 a = 3.762
Parameters b = 3.762
(A) ¢ =5.230
B = 90°
Atomic Cl1:(0, 0, 0) C1:(0.25, 0.25, 0.75)
Positions (0.5, 0.5, 0) (0.75, 0.75, 0.25)
(0, 0.5, 0.5)
(0.5, 0, 0.5)
Ag:(0.5, 0.5, 0.5) | Ag:(0.25, 0.25, 0.25)
(0, 0, 0.5) (0.75, 0.75, 0.75)
(0.5, 0, 0)
(0, 0.5, 0)

Figure 6.2: A diagram of the relationship between the NaCl-type structure and the KOH-type
structure followed by a table that lists the parameters needed to specify these structures in terms of
the NaCl-type and KOH-type space groups. Left: The usual Bl-type unit cell for AgCl at ambient
pressure. The special KOH-type unit cell is the rectangle outlined in this figure and shown by itself
in the right panel. The first nearest neighbor Cl atoms are shown connected to the central Ag atom.
T have shifted the KOH-type unit cell relative to the atomic positions listed in the table by a vector,
(0.25% ,0.257, 0.252), to place a Ag atom at the center of the unit cell.
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Structure Type KOH
Space Group P2,
Unit Cell a = 3.516
Parameters b = 3.988
(A) c = 5225
G =101°
Atomic Ag:(0.175, 0.25, 0.288)
Positions (0.825, 0.75, 0.712)
Cl1:(0.318, 0.25, 0.770)
(0.682, 0.75, 0.230)

Figure 6.3: A starting model for HPPI of AgCl. This structure corresponds to the space group and
unit cell dimensions determined by x-ray diffraction[1]. Since the atomic positions are unknown they
were assumed to be the same as actual KOH atomic positions. The unit cell is outlined. The first
nearest neighbor Cl atoms are shown connected to the central Ag atom. I have shifted the KOH-type
unit cell relative to the atomic positions listed in the table by a vector, (0.325% ,0.257, 0.2123), to
place a Ag atom at the center of the unit cell.
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«—
GKOH = aTlI

Structure Type TII KOH
Space Group Cmcm P 2,
Unit Cell a = 3.350 a = 3.350
Parameters b =9.916 b = 4.093
(A) c = 4.093 ¢ =5.233
8 = 108.667°
Atomic Ag:(0, 0.386, 0.25) | Ag:(0.886, 0.25, 0.772)
Positions (0, 0.614, 0.75) (0.114, 0.75, 0.228)

(0.5, 0.886, 0.25)
(0.5, 0.114, 0.75)
Cl: (0, 0.133, 0.25)
(0, 0.867, 0.75)
(0.5, 0.614, 0.25)
(0.5, 0.385, 0.75)

C1:(0.633, 0.25, 0.266)
(0.367, 0.75, 0.734)

Figure 6.4: A starting model for HPPII of AgCl. This structure corresponds to the space group
and unit cell dimensions determined by x-ray diffraction[1]. Since the atomic positions are unknown
they were assumed to be the same as actual TII atomic positions. The equivalent KOH-type unit
cell is shown by the Ag atom bonds. The first nearest neighbor Cl atoms are shown connected to
the central Ag atom. The table following the diagrams lists the parameters needed to reproduce
this structure in terms of both space groups. I have shifted the TlI-type and KOH-type unit cell
relative to the atomic positions listed in the table by a vector, (0.5, 0.1147, 0.252) and (0.114%,
0.757, 0.228%) respectively, to place a Ag atom at the center of the TlI-type unit cell.
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two structures are related both the Tll-type and the KOH-type unit cell is outlined
in Fig. 6.4. The table that follows the diagram lists the atomic positions and unit cell
dimensions needed to reproduce this structure in terms of both space groups. This is
just one example of a “topological” relationship between the KOH-type and TlI-type
structures. Both of these space groups allow for several variable position of the atoms
within the unit cell. Once these positions have been determined from the XAFS data
the “topological” relationship will change and could become impossible, as I discuss
in Sec. 6.6. A diagram illustrating the topological relationship between each phase of

AgCl is shown in Fig. 1.2 of the introduction.

6.2 A First Look at the Data

In soft materials such as AgCl the expected pressure dependence of the |x(R)| data
should be easily identified. Specifically, the peaks in the |x(R)| data are expected
to increase in height and to move to lower R-values. I discuss the physical reason
for these trends in Sec. 4.1.1. To see these trends, I compare the data corresponding
to the Bl-phase of AgCl at ambient pressure, 2.4 and, 4.3(5) GPa which are shown
in Fig. 6.5. The pressure was determined from the Nb calibrant presented in Ch. 4.
The Fourier transform procedure is discussed in Sec. 2.2.2. The peaks due to the first
three shells of atoms are easily identified as labeled in the figure and the following
diagram for the Bl-phase. The table next to the diagram lists the radial distance to
each of these shells along with their degeneracy. Each of these peaks in the |Y(R)|
increases in height and moves to lower R-values. This is an excellent example of the
expected pressure effects on a stable crystal structure.

In addition to this pressure dependence, most pressure induced structural phase
transitions are accompanied by an increased degeneracy of the first shell as the struc-
ture becomes more compact. For example, the degeneracy of the first shell of atoms in
the B1 to B2-phase transition increases from 6 to 8 which contributes to an increase
in the first peak height across the phase transition. As shown in the Fig. 6.4 and
Fig. 6.3 I expect the degeneracy of the first shell to increase from 6 to 7 from HPPI
to HPPII therefore an increase in the first peak height is expected if the amount of
disorder remains constant. In fact, I expect the amount of disorder, represented by
the splitting in the first shell, to decrease since HPPII has 4 atoms at the same dis-
tance whereas HPPI has a maximum of 2 atoms at the same distance. In each figure
(Figs. 6.4 and 6.3) the atoms in the first shell are shown by the bonds connected to
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Bl-phase of AgCl
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Figure 6.5: Top: The |x(R)| data for the Bl-phase of AgCl. The contribution from the first three
shells of atoms is labeled. Bottom left: A diagram of the Bl-phase of AgCl. Bottom right: A list of
the paths along with their degeneracy and half path lengths at ambient pressure. The central Agg
atom is labeled with a c¢ in the diagram. Similarly the first, second and third neighbors are labeled
with a 1, 2 and 3 in the diagram and correspond to the 15¢, 224 and 3*¢ shells labeled in the |Y(R)]
data above.
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the central Ag atom and each is labeled with a number corresponding to the distance
from the central atom. From these indications I expect the peaks in the |y(R)| data

to increase in height and mover to lower R-values across the phase transitions. To see

,_\03 T T ’ T ’ T ’ T AOS T T ’ T ’ T ’ T AOS T T ’ T ’ T ’ T

] ] ]

°|< —— Ambient pressure ] °|< r — 5(1) GPa ] °|< r — 10(2) GPa

~02 |- LPPI — ~02 HPPI — ~02 HPPII =1

— ~~ —~~ 4

50.1 ~ — ~01r — ~01 =

D 1 1

00 L VY oo b= 1 VIV, I It 00 [ IS B
4 6 8 2 4 6 8 10 4 6 8 10
R (A) R (A) R (A)

Figure 6.6: Comparison of |x(R)| data for AgCl for three distinct phases: LPP at ambient pressure,
HPPI at 5(1) GPa and HPPII at 10(2) GPa.

these trends, I compare the data from each of these phases of AgCl. An example of
the |x¥(R)| data, for the three distinct phases of AgCl is shown in Fig. 6.6. Comparing
the first three shells of the LPPI with the other two phases we see that the 2°d and 3™
shells are not well ordered by the decreased height and increased broadening of the
peaks in the same data range. Also notice that the first peak is larger in the HPPI
but again smaller in the HPPII this suggests that there is more splitting in the first
few Ag—Cl distances in HPPII than in HPPI. This trend of more splitting in the
first shell as the pressure is increased is rarely seen. We would expect an increase in
the peak height based on the increase in the number of atoms in the first shell which

goes from 6 to 7 as discussed above.

6.3 Bl-Phase of AgCl

In the previous section the |x(R)| data for the Bl-phase of AgCl at ambient pressure,
2.4 and 4.3 £ 0.5 GPa was discussed and shown in Fig. 6.5. Table 6.1 lists the data and
fit ranges along with the Fourier transform parameters used to generate these data.
The fit range includes all the atoms within the unit cell as shown in Fig. 6.5 along
with the list of paths including their degeneracy and half path lengths at ambient
pressure. The model-|¥(R)| is fit to each of these data sets with k-weightings w = 1,
2 and 3 simultaneously (see Sec. 4.4).
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Table 6.1: Fourier transform parameters along with the fit and data ranges for each phase of AgCl.
See Sec. 2.2.2 for detailed description of these parameters. The x (k) data is multiplied by a Hanning
window with full width of the sills given by the listed value for dk and a k% where the value of w,
called the k-weighting, is also listed.

| Phase R-range (A) k-range (A"') Window type dk(A ') k-weighting |

LPP [1.65:4.5] [2.5:12] Hanning 2.0 1,2 and 3
HPPI [1.65:5.3] [2.6:12.4] Hanning 2.0 1
HPPIT  [1.65:5.3] [2.6:12.4] Hanning 2.0 1

10
Mool
2L
=< — data
- / —— background -

0.0 —

1 1 | 1 1 | 1 1 | 1 1 |
25200 25500 25800 26100 26400
Energy (eV)

Figure 6.7: Example of the u(E)x data and the background function for AgCl. This data was taken
at ambient pressure. The background function is a spline with 15 knots. Ey = 25510 eV, chosen at
about the middle of the step height.

6.3.1 Alignment and Background Remouval

The background is removed according to the standard procedure described in Sec.
2.2.1. Here I will state the important parameters used in this procedure and show an
example of the results. After normalization Ej is set to the energy value corresponding
to 50% of the step height at 25510 £ 1 eV in the normalized and aligned data. The
background function fo(E)x is constructed using Ryxg = 1.5 A which corresponds to
a spline with 15 knots, as indicated by Eq. 2.31. An example of the u(E)x data and
the background is shown in Fig. 6.7.
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6.3.2 XAFS Parameters and Meaningful Parameters

The basic XAFS parameters needed in the fit of the theoretical model to the data
at each pressure are S2, 02, AEy’ and Ar; giving a total of 10 parameters. The
index ¢ indicates that each of the three paths has its own value. Sec. 2.2.4 describes
these parameters and their relation to the XAFS equation. Because of the cubic
symmetry of the Bl-phase structure each half-path length is expected to compress by
the same factor as the pressure is increased therefore Ar; = —e, T, Where 7y, is the
initial reference half-path length and ¢, is the fractional compression as defined by
Eq. 4.1. Using this relation I reduce the three Ar; parameters to the one fractional
compression, €,. Another change of variables is made through the Debye model
where a single Openye determines o? of different shells where the atom pairs are the

same. A discussion of the Debye model can be found in Sec. 4.3. The first and

Cl

debye 18 used, whereas the

third paths both contain Ag—Cl pairs therefore a single 6
second path contains Ag— Ag pairs and is, therefore, given its own Ogegbye. Each path
needed its own AEy" due to charge transfer as I discuss in Sec. 2.2.3. This model is
implemented on a trail basis and the goodness-of-fit is compared with and without
these constraints. Only when the constraints did not decrease the goodness-of-fit were
they used (see Sec. 2.2.4). Through the use of these constraints I reduced the number
of fit parameters from 10 to 7. The final parameters varied in the fit are: S2, AE,’,

Ag Cl1
€p, edebye and, edebye'

6.3.3 Determination of Sp

As described in Sec. 4.4 the method for determining S3 is to simultaneously fit data at
each pressure with k-weightings of w = 1, 2 and 3. The Fourier transform parameters
and the fit and data ranges are listed in Table 6.1. This fit and data range includes
18 independent points per data set as given by Eq. 2.40. The number of parameters
determined by the fit, as described above, is 6 for each pressure plus the one S? value.
The best-fit value for S = 0.91 + 0.01. This value for S3 will be used for all the
phases of AgCl as it only depends on the central atom as discussed in Sec. 2.1.2.

6.3.4 Pressure Dependences for the B1-Phase of AgCl

With S = 0.91 + 0.01 the theoretical model is fit to the data for each pressure
with 6 varied parameters. The best-fit values are listed in Table 6.2 along with the
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measures of the goodness-of-fit. An example of the data at 2.4(5) GPa along with the

theoretical model and fit range are shown in Fig. 6.8.

T T T | T ~~ |
N
~ L — theory - o|< r — theory |
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~— -y [\ Ao
— - = ﬁ ——X \/M v\ ‘l_‘il = —
R
= = \
) 0.1 — — E -0.1 — —
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Figure 6.8: The left panel and right panels show the |Y(R)| and Imyx(R) for the data and the
theoretical fit result for the Bl-phase of AgCl at 2.3(5) GPa and 150K. The fit range is indicated by
the vertical lines. The Fourier transform parameters and data range are listed in Table 6.1.

The value for the lattice constant at ambient pressure and 150K is found to be
a = 5.536(10) A. This value is within the measured uncertainty for the lattice constant
of a = 5.526 A calculated from the room temperature value reported in Ref. [45] and
using the thermal expansion coefficient from Ref. [52]. The values found for the energy
shifts of each path, AE(’, account for the misalignment of the data relative to the
theoretical model, as well as to compensate for phase shifts due to charge transfer.
Changes in AE,’ due to the misalignment of the data relative to the theoretical
model corresponds to the variation in AEy® for the same shell among the data taken
at different pressures. As shown in the table this variation is within 0.5 eV which is
less that our experimental resolution indicating that the alignment of the data relative
to each other and the theoretical model is very good. The relative differences in AE’
for different shells are close to constant for each pressure point and is caused by the
relative charge transfer between the atoms. Since Ag™ has given up an electron and
C1™ has gained an electron the photoelectron which is negative will be repelled from
Cl~. This results in a negative phase shift of the photoelectron wave compared to
a photoelectron which is traveling between neutral atoms as modeled in FEFF. This
negative phase shift can be compensated for by an additional positive energy shift as
indicated by Eq. 2.16 in Ref. [53]. Similarly an additional positive phase shift is add
to the photoelectron that travels from Agt —Ag™, resulting in a additional negative
energy shift. Therefore a comparison of the AEy' and AE? which correspond to
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Table 6.2: The best-fit values for the Bl-phase of AgCl. The pressure was determined from the
Nb calibrant. The six parameters found in the fit are listed. They are an energy shift for each
path, AEq’, the fractional compression, €,, and two debye temperatures, Hfbye and Ggébye. The
goodness-of-fit parameters x2 and R-factor are also listed. The reference value used to determine e,

defined in Eq. 4.1 is given by the ambient pressure and 150 K unit cell dimension a = 5.536(10) A.

[P(GPa) | ¢ Oaiye (K)  O5ie (K) X2 Refactor |
0.0(3) |0.0000(6) 162(2)  265(3) 33 0.4%
2.4(5) |0.0153(5) 166(2)  326(4) 8  0.3%
43(5) |0.0279(6) 156(2)  339(5) 33  0.2%

[P (GPa) [ AE," (eV) AEy” (V) AEg® (eV) ]

0.0(3) 3.4(2) 2.3(2) 0.6(4)
2.4(5) 2.7(2) 1.6(2) -0.1(4)
4.3(5) 3.4(2) 2.0(3) 0.7(5)

Ag—Cl (+AEy) and Ag—Ag (-AE,) paths, respectively and we find that AE," is
on average 1.2(3) eV greater than AE,” as we expect from this simple picture. A
comparison of AE,' and AE® both of which correspond to Ag—Cl paths and we
find that AEy' is on average 2.7(1) eV greater than AEy®. This is due to the model
which FEFF uses for the atomic potentials as described in Sec. 2.2.3. Briefly, FEFF
screens the core-hole atom which is the central Ag atom. For ionic materials this is a
bad approximation which effects the first nearest neighbor potential. To correct the
core-hole screening negative charge is given back to the first nearest Cl atom which
makes it more negative than the other Cl atoms. Therefore the energy shift associated
with Ag—Cl; is more positive than the energy shift associated with Ag—Cl;. More

information about energy shifts can be found in Ref. [54].

In general the expected pressure dependence for fpenye Will be positive. This is
equivalent to an increase in the stiffness of the bond between the atoms as the pressure
is increased and the bond length decreases. A detail discussion about the Debye model
and its pressure dependence can be found in Sec. 4.3. Comparing the best-fit values

for Opebye We find that this trend is true for the Ag—Cl paths, 6<!

debye> While there is not

much change in the Ag—Ag path, Hg‘egbye. The relationship between the change in the
bond length and the change in the stiffness of the bond is determined by the Griineisen
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Figure 6.9: The Griineisen relationship for the Bl-phase of AgCl. The solid line represents a least
squares fit to the data points. Left panel: The change in Openye for the Ag—Ag paths. The slope
of the line is -3~y as defined by Eq. 4.2 where v = —0.23 £ 0.28 is the Griineisen parameter. Right
panel: The change in fpebye for the Ag—Cl paths. The slope of the line is -3y where v = 3.9 £ 0.6
is the Griineisen parameter.

parameter, 7, which is defined by Eq. 4.2. Fig. 6.9 shows the fractional change in
Ogapye and H(iiye as a function of €, the fractional compression. The reference values
are taken from the ambient pressure results therefore the first point is by definition
at the origin. The Griineisen parameter for Q(I;ﬁ)ye is v = —0.23 £ 0.28 which has
the wrong sign but is at least consistent with zero while the Griineisen parameter for
Ogabye 15 7 = 3.9 £ 0.6. As shown in the figure the last data point is slightly larger
than expected from the value determined by a line through the first two points for
both H(I?eiye and 6gy, .. This increase could be due to an increase in static disorder due
to the phase transition which occurs at the next pressure point. At least one more
data point before the transition is needed to confirm this idea.

Ag
Odebye

for o2 as a function of pressure in Table 7.4.

For completeness I have listed the and nglbye and their corresponding values

6.4 HPPI of AgCl

As a starting point for the HPPI phase of AgCl, a theoretical model for the structure
as shown in Fig. 6.3 is constructed. This structure uses the unit cell parameters and
crystal symmetry as determined from x-ray diffraction measurements[1]. Since the
atomic positions were not determined they are assumed to be the same as for actual
KOH structure (see Sec. 6.1). The unit cell dimensions were determined at 9.0 GPa
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Table 6.3: List of aiz and the corresponding pebye for the Bl-phase of AgCl

Pressure (GPa) | O, (K) o (A?) o3 (A?) | 638, (K) of (A?)
0 265( 0.0084(2) 0.0105(2) | 162(2) 0.0122(3)

3) ( ) (
2.4 327(4)  0.0058(1) 0.0073(2) | 166(2)  0.0116(3)
4.3 339(5)  0.0055(1) 0.0068(2) | 156(2)  0.0130(4)

and room temperature. From the phase diagram (Fig. 6.1) these dimensions should
be similar to the structure at 7.0 GPa and 150K. This corresponds to about one
GPa above the phase transition expected to be around 6.0 GPa at 150K. From our
data we find the phase transition at 5.3(7) GPa which is at least consistent with the
phase diagram. For a comparison between our results and the diffraction results I
shift the diffraction results by -3 GPa since their higher temperature corresponds to
higher pressures than my results at lower temperature. This can be seen in the phase
diagram by the negative slope of LPPI to HPPI transition line.

The data for HPPI was taken at 5.3(7), 5.1(7), 5.7(7) and 7.4(10) GPa as deter-
mined by the Nb calibrant (see Ch. 4). T chose to compare the data taken at 7.4(10)
GPa to the theoretical model as described above. Because the model is extremely
poor I fixed the parameters based on the best-fit values found for the Bl-phase of
AgCl. Those parameters are Q(Jiiye, Hggbye and AE,’ which were taken directly from
the Bl-phase at 4.3(6) GPa as listed in Table 6.2. A diagram of this structure is
shown in Fig. 6.3. The first shell is shown in the diagram by the bonds that connect
the Cl atoms to the central Ag atom. A table of the half path lengths and their de-
generacy is shown in the right panel of Fig. 6.10. The left panel shows the |x(R)| data
and theoretical model along with the individual contributions from the first shell. As
shown in this figure the model fails to reproduce the data. The measure of probability
for two equally acceptable models is that the expected difference between the x2 will
be within two standard deviations as I discussed in Sec. 2.2.4. For this model the
measures of goodness-of-fit are R = 53% and x? = 17747 which corresponds to about
50 standard deviations away from the average fit found in Sec. 6.4.3.

The breakdown of the actual KOH atom positions within the unit cell may not

be surprising if we compare the atomic radii of the K and O atoms to that of the Ag
and Cl atoms. K and O~2 have ionic radii of 1.33 and 1.40 A respectively while Ag*
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Figure 6.10: Left panel: A comparison of the theoretical model |x(R)| based on the starting model
shown in Fig. 6.3 and the |Y(R)| data at 7.4(10) GPa and 150K for the HPPI phase of AgCl. The
individual contributions from the first 4 nearest neighbors Cl are shown as the thin curves which are
listed in the right panel along with their half path lengths and degeneracy.

and Cl~ have ionic radii of 1.26 and 1.81 A respectively[55]. The largest difference
is for the C1~ radius which is about 25% bigger than that of O~ and therefore we
might expect some differences in the local structure of KOH from that of AgCl.

6.4.1 HPPI Model

The next step is to vary the position of the atoms within the unit cell to find a match
to the data. The unit cell is very big, approximately 70 A3, therefore there are many
possibilities. I can immediately conclude from the data that the first shell of Cl atoms
needs to have a radial distance between 2.4 and 2.9 A from the central Ag atom. I
can also deduce that the splitting as predicted by the actual-KOH atomic positions
is too large to describe the XAFS data as the first peak height for the theoretical
model with this splitting is too small as compared to the data (Fig. 6.10). As a test,
the first peak of the |x(R)| data at 7.4(10) GPa can be fit with a single Ag—Cl path
were the degeneracy, half path length and pehye are determined. The result gives the
first peak except for the shoulder (the data is shown in Fig. 6.10) as a single Ag—Cl
shell at a distance of 2.68 &+ 0.01 A with a Opebye = 315 £ 50 K and a degeneracy of
6.3 + 0.7. The measures of goodness-of-fit are x? = 2333 and R-factor = 1%. The
fit range in AR = [1.65:2.65] includes 7 independent points. This result shows that
the splitting of the first Cl atoms as expected from the KOH-atomic positions listed
in Fig. 6.10 does not describe the data.

The model structure needs to be close to the actual structure before a fit can be
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considered, so a program was written to cycle through the possible atomic positions
within the unit cell. This program calculates the radial distribution about a Ag atom
(writes atoms.inp file and then runs ATOMS about a billion times). Then it checks
the first shell of Cl atoms. If the first shell is at about 2.68 A from the Ag atom then
the theoretical |x(R)| is calculated and compared with the data as in our example
above for the starting model (Fig. 6.10). The final candidates are then grouped based
on the splitting of the first Cl shell. From these groups I systematically eliminated
all but one by considering the goodness-of-fit. 1 found that the shoulder of the first
peak must be due to a Ag shell based on its shape. I also found that an added
symmetry which is present in KOH and in the B1 and B2-phases of AgCl is needed.
This symmetry is that the y position for the Ag and Cl atoms within the unit cell
had to have the same value. This means that the [101] plane is a mirror plane.

Our final result for the radial distribution function about a Ag atom at 5(1) GPa
is shown in the right panel of Fig. 6.11. Our fit range AR =[1.65:5.3] A includes
about 40 paths. Due to the large degree of splitting I found that all the paths with an
amplitude greater than 5% of the first path as determined by FEFF[56] contributed
significantly to the model. As shown by the labels in the figure, I formed 5 Ag—Ag
groups and 4 Cl—Cl groups based on their distance from the central Ag atom. Several
different constraints were placed on these groups. Originally, one Debye temperature
and one energy shift is determined for all Ag—Ag paths and another for all Ag—Cl
paths. Once a reasonable fit is found by varying the unit cell parameters, the two
Debye temperatures and the two energy shifts, the fit is refined by allowing each group
to have its own fpepye and AEy’. T found that this gave the model too much freedom,
as I obtained an excellent fit with unreasonable AE,’ values therefore I constrain some
of the groups. The best-fit with reasonable parameters is obtained by allowing the
first Ag and Cl shells to have there own energy shifts. I also found that several Debye
temperatures improved the goodness-of-fit. A table of the final varied parameters and
their notation are shown in the right panel of Fig. 6.11.

6.4.2 Crystal Structure and Radial Distribution

A diagram of the HPPI structure is shown in Fig. 6.12 along with a table listing the
unit cell parameters. I denote the atomic positions within the unit cell as jaz and
jo where j = x, y, z. As stated above the values for ys, and yc needed have the

same value which imposes a mirror symmetry about the [101] plane. Since XAFS is
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Figure 6.11: The local structure as determined from the XAFS data. Left panel: The radial distri-
bution of Cl atoms, top, and Ag atoms, bottom, about a Ag atom. Paths were grouped together
depending on their distances as shown by the labels. Right panel: XAFS parameters for each group
that were varied in the fit of the theoretical model to the data. The atomic subscripts indicate the
shell index; all Cl and Ag atoms sit in crystallographic-equivalent positions.

sensitive to the radial distribution function I cannot determine the value of yas =y

but only their relation, as explained below.

XAFS measures the radial distribution of atoms about a specific atomic species[13].
Here T measured the radial distribution about Ag atoms in AgCl. The crystal struc-
ture is given by the space group and the unit cell parameters which includes the cell
dimensions, denoted as a, b, ¢ and 3, and the fractional position of the Ag and Cl
atoms within the unit cell. There are actually two Ag and two Cl atoms inside each
the unit cell. The first Ag atom is placed at (xag, Yag, Zag) and the second Ag atom
is placed at (Xag, yag + -5, 2ag) and similarly for the Cl atoms. XAFS measures the
difference between the placement of the Ag atom and the surrounding atoms therefore

the expression for the first nearest neighbor Cl atoms goes like

dhgcr ~ ((xag —xar)a)” + ((yag — yo)0)” + ((zag — zar)e)’ (6.1)

This expression is just approximate since, for simplicity the # dependence has been
neglected. As mentioned above as long as the values for y, and yc; are the same the
absolute value cannot be determined. This is because the coefficient for the second
term on the right side of Eq. 6.1 is always zero or one half. As stated above this
constraint is found to be true and so we chose to fix the value for yz, = ya =
0.25 as found for the atomic positions of KOH. Let me emphasize that regardless
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Structure Type KOH
Space Group P2,
Unit Cell a = 3.44(6)
Parameters b = 3.99(6)
(A) c = 5.41(12)
B =99(2)°
Atomic Ag: (0.156(11), 0.25, 0.200(4))
Positions (0.844, 0.75, 0.800)
Positions Cl: (0.314(28), 0.25, 0.722(7))
Positions (0.686, 0.75, 0.278)

Figure 6.12: The final model for HPPI of AgCl as determined by the XAFS data. Left panel: A
diagram of the HPPI of AgCl. The bonds connect the first shell of atoms to the central Ag atom
which includes six Cl atoms and two Ag atoms. Right panel: The crystal structure parameters
including the best-fit values for the unit cell dimensions and the fractional position of the Ag and
Cl atoms within the unit cell. T have shifted the KOH-type unit cell relative to the atomic positions
listed in the table by a vector, (0.344%, 0.253, 0.302), to place a Ag atom at the center of the unit
cell.
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of the absolute value, as long as ya, = yc1 the radial distribution and therefore the
theoretical XAFS model are identical.

6.4.3 HPPI Results and Pressure Dependence

The data and the resulting theoretical model at each pressure are shown in Fig. 6.13.
The most dramatic pressure induced change in the data can be seen in the shoulder
of the first peak. The best-fit values found for our varied parameters as described
above are shown in Fig. 6.14. There is a total of 18 varied parameters in the fit of
the theoretical model to the data which contained about 25 independent points. The
average measures of goodness-of-fit are R = 0.2% and x? = 665. The uncertainties
in the fit parameters are quite large due to the correlations between the four atomic
position parameters and the four unit cell dimension parameters. The top row shows
the energy shifts for each group of paths. A comparison of the first shell energy shifts
with those found for the Bl-phase give some confidence in the fit. For the Bl-phase I
found an average AEy; = 2.0(5) and 3.2(5) eV for the first Ag and Cl shell respectively
which is similar to our results here which average at 1.7(5) and 3.1(5) eV for the first
Ag and Cl shell respectively. The next row and a half shows the best-fit values for
the Debye temperatures. Because of the splitting, about 40 paths were used in the
theoretical model while only a few Debye temperatures could be varied in the fit. The
Ag—Ag paths were found to have more of an impact on the quality of the fit since
the scattering from a Ag atom is stronger than that of the Cl atoms. Therefore, as
indicated in the right panel of Fig. 6.11, I grouped the Ag— Ag paths into four groups
each with its own Debye temperature and I grouped the Ag—Cl paths into only 2
groups which gave the first shell its own Debye temperature. As a result the error in
these parameters is quite large and we hardly see any pressure dependence, maybe
a slight pressure dependence for the first Ag shell which corresponds to the shoulder
of the first peak. The uncertainty in the first CI shell are about + 500 K which are
not shown in the figure since they are about as large as the best-fit values. These
values are highly correlated, by about 80%, to the ¢ dimension of the unit cell which
is partly responsible for the large uncertainties. The left side of row three shows
the best-fit values for the atomic positions. The average values are Ag:(0.154(9),
0.25, 0.198(3)) and Cl:(0.692(19), 0.25, 0.281(14)). I did not find that these values
or the angle 3, shown in the bottom row, changed with pressure suggesting that this
structure is stable in this pressure region. The last row show the best-fit values for the
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Figure 6.13: Data and theoretical model for HPPT of AgCl. Left side: |x(R)| data and theoretical
model. Right side: Im¥(R) data and theoretical model. The vertical lines represent the fit range.
The Fourier transform parameters are listed in Table 6.1.
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angle # and the unit cell dimensions. The closed symbols represent the diffraction[1]
results which agree well with my results. I have shifted their results by -3 GPa for
better comparison with our results which is due to the difference in temperature as I
discussed in Sec. 6.4.

For completeness I have listed the 0541 and 0¢;; and their corresponding values for

o? as a function of pressure in Table 6.4.

Table 6.4: List of 07 and the corresponding fpenye for the KOH-type of AgCl

Pressure (GPa)  fcn; (K) 02 (A?) [ Oam (K) o2 (A?)
5.3 559(703)  0.003(23) | 178(29) 0.009(3)
5.1 677(1100)  0.002(65) | 180(32) 0.009(3)
5.7 738(1240)  0.002(85) | 196(31) 0.007(2)
7.4 797(1800) 0.002(500) | 207(45) 0.007(3)

6.5 HPPII of AgCl

The data for the HPPII of AgCl was taken at 9.4 and 10.4 £ 1 GPa as determined
by the Nb calibrant presented in Ch. 4. The Fourier transform parameters, data
and fit ranges are listed in Table 6.1. The starting model is constructed using the
space group and unit cell dimensions from Ref. [1] since the atomic positions were not
determined they were assumed to be the same as for the TII structure. A diagram of
this structure is shown in Fig. 6.4 where the first shell is indicated by the bonds that
connect the Cl atoms to the central Ag atom. The parameters that were varied in
the fit are 635 ., 054, and AEo. This model is shown with the data at 9.4 GPa in
the left panel of Fig. 6.15. The right panel lists the path lengths and degeneracy for
the first shell. The best-fit values for our three varied parameters are Oiagbye = 96(65),
Ogabye = 386(113) and AEy = -0.9(1.6) and the goodness-of-fit parameters R = 28%
and x2 = 8500. The measure of probability for two equally acceptable models is that
the expected difference between the x? will be within two standard deviations as I
discussed in Sec. 2.2.4. This model corresponds to about 70 standard deviations from

the average fit found in Sec. 6.5.2 indicating that this starting model fails.
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Figure 6.14: Best-fit values for the HPPI of AgCl. Left side: the results for Ag—Ag paths. Right
side: The results for Ag—Cl paths. The bottom row shows our results for the unit cell dimensions
with the open symbols at 150K and the diffraction results with the closed symbols at 293K. T have
shifted the diffraction results by -3 GPa for a better comparison with our results as discussed in
Sec. 6.4. There is a total of 18 parameters and 25 independent points in the fit and data range.
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Figure 6.15: Data and theoretical model based on the starting model for HPPII of AgCl. Left panel:
A comparison of the theoretical model based on the structure shown in Fig. 6.4 and the data at
9.4(10) GPa and 150K for the HPPII phase of AgCl. Right panel: The first 3 nearest neighbors Cl
are listed along with their half path lengths and degeneracy.

6.5.1 HPPII Model

The position of the 4 Ag and 4 Cl atoms within the unit cell are determined by the
relationships shown in Table 6.5.1. The TII-type structure has two undetermined
values for the position of the atoms within the unit cell, ya, and yci. The structure,
therefore, is determined by 5 parameters: a, b, ¢, yag, and yai.

The final result for the radial distribution of atoms about a Ag atom for HPPII
of AgCl is shown in the left panel of Fig. 6.16. The atoms were grouped according to
their distance from the central Ag atoms as labeled in the figure. I found that three
Ag—Ag groups and two Ag—Cl groups were needed. The right panel of Fig. 6.16
lists the group dependent variables used to fit the model to the data.

6.5.2 HPPII Results and Pressure Dependence

The data and the resulting theoretical model at each pressure are shown in Fig. 6.18.
The best-fit values for the parameters described above are shown in Fig. 6.19. A total
of 13 parameters where varied in the fit of the model to the data which contained about
22 independent points. The average measures of goodness-of-fit are x2 = 268 and R
= 0.3%. The uncertainties in the fit parameters are quite large due to correlations
between the two atomic position and the three unit cell dimensions. The top row
shows the energy shifts for each group of paths. Comparing the relative difference of
the energy shifts for the first CI shell and the first Ag shell, I find that AE, for the
CI shell are about 3.3 £ 3 eV greater than the AE; for the Ag shell. This result is
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Table 6.5: The atomic positions for the crystal structure of the HPPII of AgCl. The only undeter-
mined values are yag and yci.

| Atom type position within unit cell |

Cl (0, Ya, 025)

Cl (0, -Yar, 0.75)

Cl (0.5, yci+0.9, 0.25)

Cl (0.5, -(ya+0.5), 0.75)

Ag (0, YAgs 0.25)

Ag (0, -V Ag: 0.75)

Ag (0.5,  yag+0.5, 0.25)

Ag (0.5, -(yag+0.5), 0.75)
6 T T T T T
§4'_ on . i 4 ‘Group Opebye  AE’ ‘
1 M ] Cli  fon  AE™
0 L L 1 1L 1 Clg 0012 AEOC12
= B Agi g AESE
‘iz 1 Agl Ag2 ”-‘ H ” § Ag2 9Ag2 AEOAgZ
<0- I [ ” ” |i I Ag3 eAgl AEOAg2

0 1 2 4 5 6

3
RA)

Figure 6.16: The radial distribution of atoms for the final model of HPPII of AgCl based on the
best-fit to the XAFS data. Left panel: The radial distribution of Cl atoms, top, and Ag atoms,
bottom about a Ag atom. Paths were grouped together depending on their distances as shown by
the labels. Right panel: XAFS parameters that were group dependent and varied in the fit of the
theoretical model to the data. The atomic subscripts indicate the shell index; all Cl and Ag atoms
sit in crystallographic-equivalent positions.
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similar to our findings for the Bl-phase where AE, for the first Cl shell was about
1.1 £ 1 eV greater than AE, for the first Ag shell. The next row shows the best-fit
values for the Debye temperatures. The uncertainty in these parameters is quite large
and we hardly see any pressure dependence. The left side of the final row shows the
best-fit values for the atomic positions. The average values are y, = 0.399(1) and
ya1 = 0.123(3). There is no pressure dependence in these values which suggests that
this structure is stable in this pressure region. The right side of the final row shows
the unit cell parameters. The closed symbols represent the diffraction[1] results. I
have shifted their results by -3 GPa for better comparison with our results which is
due to the difference in temperature (see Sec. 6.4). The best-fit values for the unit
cell dimensions agree well with the diffraction[1] results.

A ﬁl@__@’&

Cl Structure Type TII
Q O p Space Group Cmcm
@) Unit Cell a = 3.38(3)

M O

(0.5, 0.899, 0.25)
(0.5, 0.101, 0.75)
CI:(0, 0.132(3), 0.25)

M (0, 0.868, 0.75)
Py ﬂﬂ,.ffi;jzﬁ> (0.5, 0.632, 0.25)
g (0.5, 0.368, 0.75)

Figure 6.17: A diagram of the final model for HPPII of AgCl based on the best-fit to the XAFS data.
Left panel: A diagram of the HPPII of AgCl. The bonds connect the first shell of atoms, which
includes seven Cl atoms, to the central Ag atom. Right panel: The crystal structure parameters
including the best-fit values for the unit cell dimensions and the fractional position of the Ag and
Cl atoms within the unit cell. T have shifted the TlI-type unit cell relative to the atomic positions
listed in the table by a vector, (0.50%, 0.101g, 0.252), to place a Ag atom at the center of the unit
cell.

Parameters b = 9.84(7)
= g( (4) ¢ = 4.11(3)
( D Atomic Ag:(0, 0.399(2), 0.25)
Ag Positions (0, 0.601, 0.75)
O
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Figure 6.18: Data and the best-fit theoretical model for HPPII of AgCl. Left side: |x(R)| data and
theoretical model. Right side: Imy(R) data and theoretical model. The vertical lines represent the
fit range. The Fourier transform parameters are listed in Table 6.1.

For completeness I have listed the 6551 and 6¢;; and their corresponding values for

o? as a function of pressure in Table 6.6.

6.6 Discussion

The next step is to represent the HPPII, Tll-type, structure in terms of the HPPI,
KOH-type, structure. Strictly, this does not have to be possible due to the restrictions
on the placement of the atoms within the KOH-type unit cell. To demonstrate this
restriction, consider Fig. 6.20 which shows the unit cell for the TII structure as deter-
mined from the best-fit to the XAFS data at 9(1) GPa. By definition the KOH-like
unit cell must contain 2 Ag and 2 Cl atoms. I have, therefore, outlined a possible unit
cell shown by the CI bonds in the figure. The accompanying table lists the parameters
necessary to reproduce these unit cells. As shown in the table the actual space group
needed to reproduce the KOH-like unit cell is not P 2; but the more primitive P 1
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Figure 6.19: Best-fit values for HPPII of AgCl. Left side: the results for Ag—Ag paths. Right side:
the results for Ag—Cl paths. The bottom row shows our results for the unit cell dimensions with
the open symbols at 150K and the diffraction results with the closed symbols at 293K. I have shifted
the diffraction results by -3 GPa for a better comparison with our results. There is a total of 13
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parameters and 22 independent points in the fit and data range.

Table 6.6: List of 07 and the corresponding @pebye for the TlI-type of AgCl

10
P (GPa)

Pressure (GPa) Oy (K) 02 (A?) | Oag (K) oF (A?)
9.4 545(163) 0.003(1) | 183(23) 0.008(2)
10.4 525(196) 0.003(2) | 182(22) 0.008(2)

[N

2
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structure where each of the 4 atoms within the unit cell must be specified. The KOH-
type unit cell needs to be represented in terms of a single Ag atom at Agl:(xag, Yag,
zag) Where the second Ag atoms is found at Ag2:(xag, yag+0.5, za,) and similarly
for the two Cl atoms. I can move the unit cell to satisfy the condition for the Ag
atoms by adding the vector ( -0.1012%, 0.25§, -0.2024%) to the unit cell. The result
for the new atomic positions for both the Ag and Cl atoms are listed in Table 6.6.
Using these fractional distances the first Agl placement is now equivalent to the Ag2
placement as needed for the KOH-type space group and luckily the Cl1 placement is
equivalent to CI2 therefore this structure belongs KOH-type space group. Again, I
can only add one vector to the unit cell so one pair of atoms satisfy the KOH-type
space group. It is fortunate that the other pair also align themselves otherwise this

structure would not belong to the KOH-type space group.

Table 6.7: A list of equivalent atomic positions for HPPII of AgCl. The first column is the same as
in Fig. 6.20 which goes with the unit cell as shown in that figure. If I shift the unit cell by (-0.101z,
0.257, -0.2052) so that the two Ag atoms within the unit cell are given by Agl:(xag, yag, zag) and
Ag2:(xag, yag+0.5, zag) as needed for the KOH space group the result is listed in the left most
column of this table. With this shift of the unit cell the two Cl atoms are given by a similar relation
Cll:(xc1, yoi, za1) and Cl2:(x¢1, you+0.5, zc1) so that it is possible to represent this structure in
terms of the KOH-type space group.

Structure Type KOH-like KOH
Space Group P1 P 2;
Unit Cell a = 3.38(3) a = 3.38(3)
Parameters b = 4.11(3) b = 4.11(3)
(A) ¢ = 5.20(3) ¢ = 5.20(3)
B =109(1)° B =109(1)°

Ag1:(0.899, 0.75, 0.798)
Ag2:(0.101, 0.25, 0.202)
Cl11:(0.632, 0.25, 0.264)
C12:(0.368, 0.75, 0.736)

Ag:(0.101, 0.25, 0.202
(0.899, 0.75, 0.798
C1:(0.732, 0.25, 0.267
(0.368, 0.75, 0.736

~—

Atomic Positions

~— N

To illustrate the usefulness of the “topological” relationship I show the param-
eters for the KOH-type unit cell for all three phases of AgCl in Fig. 6.21 and the
corresponding diagram for these structures in Fig. 6.22. As shown in Fig. 6.21 the
Ag and Cl atomic positions are constant within each of these phases. Also the angle
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CKOH

bkxon
= ¢TIt
AKOH = QTII
Structure Type KOH-like TII
Space Group P1 Cm3m
Unit Cell a = 3.38(3) a = 3.38(3)
Parameters b = 4.11(3) b = 9.84(7)
(A) c = 5.20(3) c = 4.11(3)
B = 108.94(1)°
Atomic Agl:(0, 0, 0) Ag:(0, 0.399(2), 0.25)
Positions Ag2:(0.202, 0.5, 0.405) (0, 0.601, 0.75)
Cl1:(0.733, 0, 0.466) (0.5, 0.899, 0.25)
C12:(0.469, 0.5, 0.938) (0.5, 0.101, 0.75)
C1:(0, 0.132(3), 0.25)
(0, 0.868, 0.75)
(0.5, 0.632, 0.25)
(0.5, 0.368, 0.75)

Figure 6.20: A diagram of the best-fit model the HPPII of AgCl in terms of the KOH and TII
space groups. The bonds connect the first shell of atoms to the central Ag atom which includes
seven Cl atoms. The atomic positions for the KOH space group are not allowed (see the text).
From the geometry of these space groups the KOH parameters are related to the TII parameters
as: tan(f) = atir/bri and brir = 2ckom-sin(B). I have shifted the TlI-type unit cell relative to the
atomic positions listed in the table by a vector, (0.50%, 0.101¢, 0.252), to place a Ag atom at the
center of the unit cell.
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B does not show any pressure dependence within the KOH-type and TlI-type phases.
The lack of a pressure dependence in the atomic positions and the angle (3 is strong
evidence that the KOH-type and TlI-type phases are stable crystal structures just as
the B1 and B2 phases are. Our results for the unit cell dimensions along with the
diffraction results are shown in the bottom row with the open and closed symbols
respectively. The room temperature diffraction results have been shifted by -3 GPa

(see Sec. 6.4) for better comparison with our results at 150K.

Ag atomic positions Cl atomic positions
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Figure 6.21: KOH-type parameters for all phases of AgCl. The solid vertical lines separate the data
from different phases. The crystal structure of each phase is pressure independent which indicates
that the structure is stable in this range. We did not find a gradual change of the angle § as we
might expect indicated by the line in the lower left graph. Instead the angle changes quickly in
the region between the different phases and is then stable until the next phase transition. The unit
cell parameters from our best-fit and from the diffraction study are shown as the open and closed
symbols respectively. We have shifted their room temperature results by -3 GPa (see Sec. 6.4) for
comparison with our results at 150 K.
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As a final check I calculate the volume per chemical formula as a function of
pressure. The results are shown in Fig. 6.23 and illustrates that the overall volume is
decreasing as the pressure is increased.

LPPI  Ag

Figure 6.22: KOH-type unit cell for each phase of AgCl. Left: The KOH-type unit cell for LPPI.
Middle: The KOH-type unit cell for HPPI. Right the KOH-type unit cell for HPPII. The parameters
for these structures are shown in Fig. 6.21.
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Figure 6.23: Volume per chemical formula as a function of pressure for AgCl.
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Starting Model based on assumed atomic positions
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Figure 6.24: A comparison of the structures based on the starting and final models for HPPI of
AgCl. Top: A comparison of the data and model for the structure based on the unit cell dimensions
determined from diffraction measurements[1]. The atomic positions were not determined therefore
they were assumed to be the same as the KOH structure. Left side lists the first four shells, their
degeneracy and radial distance. Bottom: A comparison of the data and model for the structure based
on the unit cell dimensions determined from diffraction measurements[1]. The atomic positions were
determined by the best-fit to the XAFS data. Left side lists the first four shells, their degeneracy
and radial distance. Both of these models are consistent with the diffraction measurements for the
long range structure but only the final model is consistent with the XAFS measurements for the
local structure.
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Figure 6.25: A comparison of the structures based on the starting and final models for HPPI of
AgCl. Top: A comparison of the data and model for the structure based on the unit cell dimensions
determined from diffraction measurements[1]. The atomic positions were not determined therefore
they were assumed to be the same as the KOH structure. Left side lists the first four shells, their
degeneracy and radial distance. Bottom: A comparison of the data and model for the structure based
on the unit cell dimensions determined from diffraction measurements[1]. The atomic positions were
determined by the best-fit to the XAFS data. Left side lists the first four shells, their degeneracy
and radial distance. Both of these models are consistent with the diffraction measurements for the
long range structure but only the final model is consistent with the XAFS measurements for the
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6.7 Conclusions

I have determined the local structures of the high pressure phases of AgCl which are
different than previously assumed in the diffraction study[1]. The assumed placement
of the atoms within the unit cell for the KOH-type phase of AgCl are the same as
for actual KOH and are Ag:(0.175, 0.25, 0.288) and Cl:(0.318, 0.25, 0.770). The
positions that are consistent with the XAFS data are Ag:(0.156(11), 0.25, 0.200(4))
and Cl:(0.314(28), 0.25, 0.722(7)). The local structure as predicted by these atomic
positions is quite dramatically different as shown in Fig. 6.24. The left side of this
figures lists the shells which correspond to the first peak. As listed the radial distances
as determined from the best-fit to the XAFS data are much more similar which gives
the first large peak in the data. Similarly, the assumed atomic positions for the
Tll-type phase of AgCl are the same as for actual TII and are: Ag:(0,0.386,0.25)
and Cl:(0,0.133,0.25). The positions that are consistent with the XAFS data are
Ag:(0,0.399(2),0.25) and Cl:(0,0.132(3),0.25). Here the best-fit yo value is consistent
with the previously assumed value, and only a modest change has been made to the
yag value. This illustrates the sensitivity of XAFS to these positions by the relatively
large differences shown in the theoretical models which are shown in Fig. 6.25 along
with the shell distances which correspond to the first peak in the data.

I found that the TlI-phase of AgCl can be expressed in terms of a KOH-type
structure which is consistent with the topological phase transition mechanism. The
KOH-type unit cell for each AgCl phase is shown in Fig. 6.22 However for a given
phase the crystal structure appears to be stable i.e. not changing gradually. This
is not consistent with the pressure dependence of the topological phase transition as
predicted in the diffraction study[l]. Fig. 6.22 shows the KOH-type unit cell for each
of the phases: LPPI, HPPI and, HPPII. The pressure dependence of the KOH-type
parameters are shown in Fig. 6.21. As discussed in Sec. 6.6 during both HPPI and
HPPII the atomic positions and the angle 3 are constant indicating that these crystal
structures are stable over a pressure range of several GPa. Most notably, 8 jumps
quickly from 90° at 4.3 GPa in the Bl-phase to 101° at 5 GPa in the KOH-phase and
remains constant until 8 GPa in the KOH-type phase. This is not consistent with the
pressure dependence of the phase transition mechanism as described in Ref. [1] which
predicted a gradually increasing [ as indicated by the dashed line in this figure. The
XAFS results indicate that the topological relationship still holds but the pressure
dependence of [ is step-like.
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The final question is: What is the crystal structure in between the transitions
for each phase?” Does the angle 3 gradually increase in the narrow pressure range
of 0.7 GPa between the Bl-phase at 4.3 GPa and the KOH-type phase at 5 GPa or
is the crystal structure a mixture of the Bl-phase and the KOH-type phase in this
transition region? Unfortunately this XAFS data does not give the answer but some

clue is found in the case of AgBr and is discussed in the next chapter.



Chapter 7

LOCAL STRUCTURE OF AgBr UNDER PRESSURE

The AgBr data was taken at 150K and at ambient pressure, 1.3(3), 3.0(5), 3.3(5),
4.9(5), 7.8(11), and 11.4(18) GPa. Experimental details can be found in Chapter 3.
The pressure was determined from the XAFS data of Nb as discussed in Chapter 4.
This chapter is an extension of the previous AgCl chapter. First, the Bl-phase of
AgBr is discussed. Then, the results for the atomic positions within the unit cell of
HPPI for AgCl are applied to the high pressure phase of AgBr.

7.1 A First Look at the Data

The |x(R)|-data for AgBr is shown in Fig. 7.1. The left panel shows the data for the
Bl-phase. The peaks due to the first three shells of atoms are labeled as listed in
Table 7.1 with their degeneracy and reference distance. A sketch of the B1 structure
is shown for AgCl in Fig. 6.5. The right panel of Fig. 7.1 shows the data for the HPPI
phase of AgBr. The arrow at about 3.5 A shows some indication that the data at 4.9
GPa may not have the same structure as the other two data at 7.8 and 11.4 GPa.
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Figure 7.1: Pressure dependence of |[{(R)| for AgBr. Left panel: |¥(R)|-data for the Bl-phase of
AgBr. The first shell peak increases in height as the pressure is increased. The corresponding data
was taken at ambient pressure, 1.4, 3.0 and 3.3 GPa. Right panel: |x(R)|-data for HPPI of AgBr.
The arrow at 4.5A shows that the data at 4.9 GPa is somewhat different from the other two data.
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Table 7.1: The first three shells for the Bl-phase of AgBr about a Ag atom. The unit cell parameter
a = 5.7745 at ambient pressure and room temperature[45] was used to determine the radial distances
Rrer. The degeneracy of each shell is also listed, N;. The contribution to the |¥(R)|-data for each
shell is labeled in Fig. 7.1

‘ atom type Ry (A) N; ‘
Ag, —Br;, 2887 6
Ag, —Ag, 4.083 12
Ag. —Br; 5001 8

7.2 Bl-Phase of AgBr

In the previous section the |x(R)|-data for the Bl-phase of AgCl at ambient pressure,
1.4, 3.0 and 3.3 £ 0.5 GPa was discussed as shown in Fig. 7.1. Table 7.2 lists the data
and fit ranges along with the Fourier transform parameters used to generate these
data. The fit range includes all the atoms within the unit cell as listed in Table 7.1
along with their degeneracy and half path lengths at ambient pressure. The model-
IX(R)| was fitted to each of these data sets with k-weightings 1, and 2 simultaneously
(see Sec. 4.4).

Table 7.2: Fourier transform parameters along with the fit and data ranges for each phase of AgBr.
See Sec. 2.2.2 for detailed description of these parameters. The x(k)-data was multiplied by a
Hanning window with full width of the sills given by the listed value for dk and a k* where the value
of w, called the k-weighting, is also listed.

Phase R-range (A) k-range (A~!) Window type dk(A~!) k-weighting |
LPP [1.7:5.2] [3.55:12.10)] Hanning 2.0 1 and 2
HPPI [1.7:4.8] [2.8:13] Hanning 2.0 1

7.2.1 Alignment and Background Remouval

The background was removed according to the standard procedure described in Sec.
2.2.1. Here I will state the important parameters used in this procedure and show
an example of the results. After normalization E, was set to the energy value corre-
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Figure 7.2: Example of the u(E)x-data and background function for AgBr. This data was taken at
ambient pressure. The background function is a spline with 15 knots. Ey = 25535 eV, chosen at
about the middle of the step height.

sponding to 50% of the step height at 25535 4+ 1 eV in the normalized and aligned
data. The background function po(E)x was constructed using Rpxg = 1.5 A which
corresponds to a spline with 15 knots, as indicated by Eq. 2.31. An example of the
p(E)x-data and background is shown in Fig. 7.2.

7.2.2 XAFS Parameters and Meaningful Parameters

The XAFS parameters needed in the fit of the theoretical model to the data at each
pressure are S3, 02, AE," and Ar; giving a total of 10 parameters. The index i indicates
that each of the three paths has its own value. Sec. 2.2.4 describes these parameters
and their relation to the XAFS equation. Because of the cubic symmetry of the B1-
phase structure each half-path length is expected to compress by the same factor as
the pressure is increased therefore Ar; = —epTres; Where 7eq; is the initial reference
half-path length and ¢, is the fractional compression as defined by Eq. 4.1. Using this
relation the three Ar; parameters are reduced to the one fractional compression, ep.
Another change of variables was made through the Debye model where a single Opebye
determines o7 of different shells where the atom pairs are the same. A discussion of
the Debye model can be found in Sec. 4.3. The first and third paths both contain
Ag—Br pairs therefore a single QEbee was used, whereas the second path containing
Ag—Ag pairs was given its own Hﬁaye. Each path needed its own AEy* due to charge
transfer as I discuss in Sec. 2.2.3. This model was implemented on a trail basis and
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the goodness-of-fit was compared with and without these constraints. Only when
the constraints did not decrease the goodness-of-fit were they used (see Sec. 2.2.4).
Through the use of these constraints the number of varied parameters is reduced from

10 to 7. The final parameters varied in the fit are: SZ, AEy’, ¢, Hﬁegbye and, eggbye.

7.2.8 Determination of So

As described in Sec. 4.4 the method for determining S3 is to simultaneously fit data
at each pressure with k-weightings of w = 1, 2 and 3. The Fourier transform pa-
rameters and the fit and data ranges are listed in Table 7.2. This fit range includes
18 independent points per data set as given by Eq. 2.40. The number of parameters
determined by the fit, as described above, was 6 for each pressure plus the one S?
value. The best-fit value for S2 = 1.01 £ 0.02. This value for S7 will be used for all
the phases of AgBr as it only depends on the central atom as I discussed in Sec. 2.1.2.

7.2.4 Pressure Dependences for the B1-Phase of AgBr

With S3 = 1.01 & 0.02 the theoretical model was fitted to the data for each pressure
with 6 varied parameters. The best-fit values are listed in Table 7.3 along with the
measures of the goodness-of-fit. An example of the data and the theoretical model at
1.4(5) GPa are shown in Fig. 7.3.

0.2 T | T T T T T T T —_ 02 T [ ' [ ' [ '
~
~ |
q L -——- data 1 et L 1 theory |
ot —— theory ~ [\ r--- data
~— ~~ \ A
— 0.1 — _ 5 0.0 \/m {\VV I,vl\\ N 4
= = Vv
~ B | E B |
a \\ W2 =
I\
0.0 7| 1 | LA LT SN 0.2 | | | 1 | 1
0 2 8 10 o 2 6 8

4 6 zll
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Figure 7.3: Comparison of the data and the best-fit theoretical model for the Bl-phase of AgBr. The
left panel and right panels show the |y(R)| and Imy(R) for the data and the theoretical fit result
for the Bl-phase of AgBr at 1.4(5) GPa and 150K. The fit range is indicated by the vertical lines.
The Fourier transform parameters and data range are listed in Table 7.2.

The value for the lattice constant at ambient pressure and 150K was found to
be a = 5.737(16) A. This value is within the measured uncertainty with the lattice
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Table 7.3: The best-fit values for the Bl-phase of AgBr. The pressure was determined from the
Nb calibrant. The six parameters found in the fit are listed. They are an energy shift for each
path, AEq!, the fractional compression, €p, and two debye temperatures, 0§egbye and Hggbye' The
goodness-of-fit parameters x2 and R-factor are also listed. The reference value used to determine
€p is given by the ambient pressure and 150 K unit cell dimension a = 5.737(8) A. The data at 4.9

GPa will be discussed latter in this chapter.

[P (GPa) | & 64 (K) O (K) x) R-factor |

0.0(3) ]0.000(8) 137(3) 171(2) 133 1.2%
1.4(5) |0.016(5)  147(4) 207(2) 91  0.6%
3.0(5) |0.031(5)  139(4) 213(3) 92 0.7%
3.3(5) |0.028(5)  150(4) 232(3) 110  0.5%
4.9(5) |0.035(5) 84(12)  288(42) 78  0.5%
| P (GPa) | AE,' (eV) AEg® (eV) AEy’ (eV) |
0.0(3) 1.1(7) 0.0(4) 3.5(11)
1.4(5) 2.9(6) 1.7(4) 5.4(9)
3.0(5) 2.9(6) 1.9(4) 6.8(9)
3.3(5) 3.0(6) 1.7(4) 6.2(10)
4.9(5) -.3(20) -1.6, 2.4,
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constant a = 5.751 A calculated from the room temperature value reported in Ref. [45]
and using the thermal expansion coefficient from Ref. [52]. The values found for the
energy shifts of each path, AE,’, account for the misalignment of the data relative to
the theory, as well as to compensate for phase shifts due to charge transfer. Changes
in AEy® due to the misalignment of the data relative to the theory corresponds to
the variation in AEy® for the same shell among the data taken at different pressures.
As shown in the table this variation is within +1 eV which is consistent with our
experimental resolution, indicating that the alignment of the data sets relative to
each other and the theory is very good. The relative differences in AE,’ for different
shells are vary close to constant for each pressure point and is caused by the relative
charge transfer between the atoms. Since Ag™ has given up an electron and Br~
has gained an electron the photoelectron which is negative will be repelled from
Br~. This results in a negative phase shift of the photoelectron wave compared to
a photoelectron which is traveling between neutral atoms as modeled in FEFF. This
negative phase shift can be compensated for by an additional positive energy shift as
indicated by Eq. 2.16 in Ref. [53]. Similarly an additional positive phase shift is add to
the photoelectron that travels from Ag™ —Ag*. This results in a additional negative
energy shift. Therefore a comparison of the AEy' and AEy? which correspond to
Ag—Br (+AEg) and Ag—Ag (-AEg) paths, respectively and we find that AE," is
on average 1.5(5) eV greater than AE? as we expect from this simple picture. A
comparison of AE,' and AE,® both of which correspond to Ag—Br paths and we
find that AE' is on average 3(1) eV greater than AEy®. This is due to the model
which FEFF uses for the atomic potentials as described in Sec. 2.2.3. Briefly, FEFF
screens the core-hole atom which is the central Ag atom. For ionic materials this is
a bad approximation which effects the first nearest neighbor potential. To correct
the core-hole screening we need to give negative charge back to the first nearest Br
atom which makes it more negative than the other Br atoms. Therefore the energy
shift associated with Ag—Br; is more positive than the energy shift associated with
Ag—Brs. More information about energy shifts can be found in Ref. [54].

In general the expected pressure dependence for fOpenye Will be positive. This is
equivalent to an increase in the stiffness of the bond between the atoms as the pressure
is increased and the bond length decreases. A detail discussion on the Debye model
and its pressure dependence can be found in Sec. 4.3. Comparing the best-fit values

for Opebye We find that this trend is true for the Ag—Br paths, aggbye, while there is
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Figure 7.4: Example of the Griineisen relationship for the Bl-phase of AgBr. The solid line represents
a least squares fit to the data points. €, is defined as the fractional compression, r - ro/r. Left panel:
The change in Opebye for the Ag—Ag paths. The slope of the line is -3y where v = 0.52 4 0.41 is the
Griineisen parameter. Right panel: The change in fpepye for the Ag—Ag paths. The slope of the
line is -3y where v = 3.4 £ 0.5 is the Griineisen parameter.

not much change in the Ag—Ag path, Hé\e%)ye. The relationship between the change
in the bond length and the change in the stiffness of the bond is determined by the
Griineisen parameter, v, defined in Eq. 4.2. Fig. 7.4 shows the fractional change in
0§§bye and 0§egbye as a function of €, the fractional compression defined by Eq. 4.1. The
reference values are taken from my ambient pressure results therefore the first point
is by definition at the origin. The Grineisen parameter for Hiiye is v =0.52 £+ 0.41
while the Griineisen parameter for ngrbye isy=23440.5.

For completeness I have listed the Ogegbye and 6%, . and their corresponding values

for o7 as a function of pressure in Table 7.4.

Table 7.4: List of 07 and the corresponding fpenye for the Bl-phase of AgBr

) o3 (A) |0, (K) o7 (A?)

0 170(2)  0.0103(2) 0.0137(3) | 137(3)  0.0170(8)
1.4 207(2)  0.0072(2) 0.0096(2) | 147(4)  0.0147(6)
3.0 213(3)  0.0069(2) 0.0091(2) | 139(4)  0.0164(9)
)1 (2) ; g

P (GPa) | Ogorye (K)  of (A7

3.3 232(3)  0.0059(2) 0.0078(2) | 150(4)  0.0142(8
49 | 492(521)  0.004(1) 0.017(15) | 245(61)  0.043(12
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7.3 HPPI of AgBr

The data for the HPPI was taken at 7.8(11) and 11.4(18) GPa as determined by the
Nb calibrant in a similar manor as for AgCl which is discussed in detail in Ch. 4.
Starting with the results from the HPPI of AgCl, T apply them to AgBr. As
shown in the previous section the unit cell for the Bl-phase of AgBr is about 4%
larger than that of AgCl, therefore the unit cell parameters for AgCl were increased
accordingly. Since several data points for the HPPI phase of AgCl indicated that the
angle [ was constant, its value, therefore, was set to 101°, decreasing the number of
varied parameters. The values for the position of the atoms within the unit cell were
originally fixed at the average values found for AgCl and the unit cell dimensions, a
single Openye and AEj for all Ag—Ag paths and another for all Ag—Br paths were
determined by a fit to the data. Once a reasonable fit was found the four variable
positions (Xag, Zag, Xpr and zp,) for the placement of the atoms within the cell were
also determined. These parameters are discussed in detail for AgCl in Sec. 6.4.2.

7.3.1 HPPI Model

The final result for the radial distribution function about a Ag atom at 7.8(11) GPa
is shown in the right panel of Fig. 7.5. The fit range AR =[1.69:6.0] A includes about
40 paths. Due to the large degree of splitting I found that all the paths with an
amplitude greater than 5% of the first shell as determined by FEFF[56] contributed
significantly to the model. As shown by the labels in the figure, I formed one Ag—Ag
group and 2 Br—Br groups based on their distance from the central Ag atom. Several
different constraints were placed on these groups. Once a reasonable fit was found
by varying the unit cell parameters, the two Debye temperatures and the two energy
shifts, the fit was refined by allowing each group to have its own Opepy. and AEq. A
table of the final varied parameters and their notation are shown in the right panel
of Fig. 7.5.

A sketch of the HPPI structure is shown in Fig. 7.6 along with a table listing the

unit cell parameters.

7.8.2 HPPI Results and Pressure Dependence

The data and the resulting theoretical model at each pressure are shown in Fig. 7.7.

The best-fit values found for our varied parameters as described above are listed in
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Table 7.5: The best-fit values for the HPPI of AgBr. The pressure was determined from the Nb
calibrant. The 13 parameters found in the fit are listed. They are an energy shift for each path,
AEy"; the unit cell parameters a, b, and ¢; the atomic positions xag, zAg, XBr, and zg,; and three

Agl

Debye temperatures, 6,5, ., 6

debye’

and g5 .. The goodness-of-fit parameters x and R-factor are

also listed. The data at 4.9 GPa will be discussed later in this section.

| P(GPa) | a(A) b(A) c¢(A) x%2 R-factor |
19(5) | 3.84(4) 3.87(4) 556(5) 78 05%
7.8(11) |3.73(3) 3.95(4) 5.42(6) 109  0.6%
11.4(18) | 3.65(2) 4.01(3) 5.33(3) 40  0.3%
| P (GPa) | x4 ZAg XBr s |
2.9(5) | 0.173(6) 0.200(1) 0.309(16) 0.741(6)
7.8(11) | 0.146(5) 0.189(2) 0.326(60) 0.722(10)
11.4(18) | 0.133(5) 0.184(3) 0.349(20) 0.730(4)
| P (GPa) | Oe (K) Oiine(®) i (K) |
19(5) | 199(127) 492(521) 245(61)
7.8(11) | 249(148) 38(4000) 184(21)
11.4(18) | 284(73)  139(25)  163(14)
| P (GPa) | AE,' (eV) AE¢® (eV) AEy’ (eV) |
19(5) | 2.9(13) 0.1, 1.3,
7.8(11) | 3.3(10)  1.1(14)  0.7(17)
11.4(18) |  2.6(9) 0.2(8) 3.0(17)
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Figure 7.5: The radial distribution of atoms for HPPI of AgBr based on the best-fit to the XAFS
data. Left panel: The radial distribution of Br, top, and Ag, bottom, atoms about a central Ag
atom. Paths were grouped together depending on their distances as shown by the labels. Right panel:
XAFS parameters for each group that were varied in the fit of the theoretical model to the data.
The atomic subscripts indicate the shell index; all Br and Ag atoms sit in crystallographic-equivalent
positions.

Table 7.5. There is a total of 13 varied parameters in the fit of the theoretical model
to the data which contained about 29 independent points. The average measures
of goodness-of-fit are R = 0.4% and x? =75. The uncertainties in the determined
parameters are quite large due to the correlations between the four atomic position

parameters and the three unit cell dimension parameters.

For completeness I have listed the e(iegbye and Hfgéye and their corresponding values

for o7 as a function of pressure in Table 7.6.

Table 7.6: List of 07 and the corresponding fpebye for the KOH-type of AgBr

Pressure (GPa) 05 (K)  of (A?) o2 (A?) o2 (A?)
1.9 199(127)  0.0075(110) 0.0076(112) 0.0078(114)
7.8 249(148)  0.0050(64)  0.0051(64)  0.0051(65)
11.4 284(73) 0.0039(20)  0.0040(20)  0.0041(19)
Pressure (GPa) 0&%}% (K) o2 (A?)

19 246(61)  0.0047(22)

7.8 184(21)  0.0079(18)

11.4 163(14)  0.0042(20)
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Structure Type KOH
Space Group P2,
Unit Cell a = 3.73(3)
Parameters b = 3.95(4)
(A) ¢ = 5.42(6)
8 =101°
Atomic Ag: (0.146(5), 0.25, 0.189(2))
Positions (0.854, 0.75, 0.811)
Br:(0.326(59), 0.25, 0.722(10))
(0.674, 0.75, 0.278)

Figure 7.6: The structure of HPPI for AgBr based on the best-fit to the XAFS data. Top: A
diagram of the HPPI of AgBr. The bonds connect the first shell of atoms to the central Ag atom
which includes six Br atoms and two Ag atoms. Bottom: The crystal structure parameters including
the best-fit values for the unit cell dimensions and the fractional position of the Ag and Br atoms
within the unit cell. T have shifted the KOH-type unit cell relative to the atomic positions listed in
the table by a vector, (0.278% ,0.25§, 0.3112), to place a Ag atom at the center of the unit cell.
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Figure 7.7: A comparison of the data and the theoretical model based on the best-fit to the XAFS
data for HPPI of AgBr. Left side: |y(R)|-data and theory. Right side: Imy(R)-data and theory.
The vertical lines represent the fit range. The Fourier transform parameters are listed in Table 7.2.
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The model for HPPI does not described the data at 4.9 GPa. The angle § was
allowed to vary, and despite many attempts the data particularly the peak at about
3.5 A as shown in the Fig. 7.1 could not be reproduced. As a final attempt I tried a
mixture of both HPPI structure and the Bl structure. As a starting point I used the
parameters for the HPPI structure at 7.8 GPa and for the B1 structure at 3.3 GPa.
This model was surprisingly successful at reproducing the data. The resulting |x(R)|-
data and model are shown in Fig. 7.8. The best-fit parameters for HPPI structure
and the B1 structure are listed in Table 7.5 and Table 7.1 along with the previous
results. The mixing percent was found to be 44% HPPI phase.
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Figure 7.8: A comparison of the data and the theoretical model based on the best-fit to the XAFS
data for mixture of HPPI and B1 phases of AgBr. Left side: |Y(R)|-data and theory. Right side:
Imy(R)-data and theory. The vertical lines represent the fit range. The Fourier transform parameters
are listed in Table 7.2.

Fig. 7.9 shows the KOH-type parameters for both the B1 and HPPI structures of
AgBr. As in AgCl the same splitting of the unit cell parameters ¢ and b were found
for HPPI. Fig. 7.10 shows the volume per chemical formula as a function of pressure

and illustrates that the overall volume is decreasing as the pressure is increased.

7.4 Conclusions

I have determined the local structure for the KOH-type phase of AgBr, which is very
similar to the structure for AgCl. 1 was also fortunate enough to have one data
point between the Bl-phase and the KOH-type phase that could not be described
as either the Bl-phase or the KOH-type phase alone. This data, also, could not
be described with a KOH-type structure with an angle # between 90° and 101° as
expected for a gradual pressure dependence of the topological transition mechanism.
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Figure 7.9: KOH-type parameters for all phases of AgBr. The solid vertical lines separate the data
from different phases. The crystal structure of each phase is pressure independent which indicates
that the structure is stable in this range.
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Figure 7.10: Volume per chemical formula as a function of pressure of AgBr.
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The only reasonable fit to the data was found by allowing for a mixture of B1 and
KOH-type phases. This is consistent with the martensitic-like mechanism as found for
RbCI. Based on this evidence it seems likely that the transition between each phase of
AgCl and AgBr is martensitic-like while the overall “topological” relationship between
each phase exists. Another unfortunate but possible explanation for this mixture is
pressure gradients. Unlike the RbCl transition which occurs at much lower pressure
and where I have three data points consistent with a mixture of phases, for AgBr the
transition pressure is about 10 times larger, in a regime known to produce pressure
gradients, and I have only a single data point consistent with a mixture. Therefore it
is difficult to be certain as to the transition mechanism between each phase of AgCl
and AgBr.



Chapter 8

CONCLUSIONS

Based on my analysis of the transition region of RbCl, AgCl, and AgBr systems
I found that the transition mechanism is quite different in the two systems. The
transition mechanism for RbCl is consistent with a martensitic-like transition, whereas
the transition mechanism for AgCl is more “topological”. The next two paragraphs
summarize my results for these systems.

For the RbCl system: From the fits of the theoretical model to the data at the
transition I deduce the following properties of the phase transition. First the crystal
structure for these data were found to be consistent with a mixture of phases and not
with the intermediate KOH-type structure. Second, the phase transition requires an
excess pressure at the onset of the transition of 0.2(1) GPa. Once the transition starts
the system relaxes to a pressure of 0.5(1) GPa which remains approximately constant
until the transition is complete. This is expected in martensitic-like transitions where
the nucleation of the parent (B2) phase requires excess pressure. This also explains
why the previously reported values for the transition pressure may be slightly low.
Third, because the best-fit values for o2 and C} of each shell in the single-phase regions
were used to parameterize their pressure dependence and this pressure dependence
was used in the model of the data at the transition, it follows from the success of
these fits that the structural disorder is no larger at the phase transition than in
the single-phase regions. From these results we conclude that the phase transition is
consistent with a martensitic-like interpretation.

For the AgCl system: I have determined the local structure of two high pressure
phases of AgCl which are different than previously assumed[1]. The first high pressure
phase is a KOH-type structure and the second is a TlI-type structure. The “topologi-
cal” relationship is based on the KOH-type structure which can be used to reproduce
the structure of each phases of AgCl. Even though I found that the local structure of
the TlI-type was different than previously assumed, I found that the TIlI-type phase
of AgCl can still be expressed in terms of a KOH-type structure which is consistent
with the topological phase transition mechanism. This does not by definition to be
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possible and is only true for special TIlI-type structures.

The “topological” relationship between all the structural phases exist, but the
transition mechanism is different than suggested in the diffraction study[1]. In the
diffraction study it was proposed that the KOH-type and TlI-type phases would
gradually distort connecting the B1 to the B2 phase. If this were the case the angle
0 of the equivalent KOH-type unit cell is expected to slowly increase from 90° —125°
of the B1 and B2 phases respectively. Instead I found that the angle [ increases in a
step like manor from 90° —101° —110° —125° for the B1, KOH, TII and B2 phases
respectively. Furthermore, at the transition from the Bl to KOH-type phase, any
change in the angle # must be occurring within a small pressure range of 0.7 GPa
between 4.3 and 5.0 GPa which were found to be consistent with the B1l-phase and
KOH-type phase respectively.

For the AgBr system: I have determined the local structure for the KOH-type
phase, which is very similar to the structure for AgCl. I also have one measurement of
the crystal structure between the Bl-phase and the KOH-type phase that could not be
described as either the Bl-phase or the KOH-type phase alone. This data, also, could
not be described with a KOH-type structure with an angle 4 between 90° and 101° as
expected for the gradual pressure dependence of the topological transition mechanism.
The only reasonable fit to the data was found by allowing for a mixture of B1 and
KOH-type phases. This is consistent with the martensitic-like mechanism as found for
RbCl. Based on this evidence it seems likely that the transition between each phase of
AgCl and AgBr is martensitic-like while the overall “topological” relationship between
each phase exists. Another unfortunate but possible explanation for this mixture is
pressure gradients. Unlike the RbCl transition which occurs at much lower pressure
and where I have three data points consistent with a mixture of phases, for AgBr the
transition pressure is about 10 times larger, in a regime known to produce pressure
gradients, and I have only a single data point consistent with a mixture. Therefore it
is difficult to be certain as to the transition mechanism between each phase of AgCl
and AgBr.
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Models for XAFS data are based on a group of paths. The path is defined as
starting from the excited atom and then to one or more neighboring atoms and then
back to the excited atom. As discussed in Section 2.2.4 each path can have a total
of seven parameters. The feffit.inp file is constructed so that each path has a
paragraph containing three columns.
represents a parameter for the path. The second column specifies a unique number
for the path. The third column may be a mathematical expression or a number
which will be used for the key word. The basic form of this paragraph is shown in
Fig. A.1 and a list of the key words which correspond to the parameters described in

Appendix A

FITTING MODELS IN feffit

Section 2.2.4 are shown in Table A.1.

Table A.1: Key words used in FEFFIT.

‘ key word symbol description
path The name of the feffnnnn.dat file for this
path
id A short description of the path.
s02 S Passive electron reduction factor.
el AEqg  Shift in the reference photoelectron wave
number.
delr AR  Shift in the path length.
sigma?2 o? Relative mean square displacement about
path length.
third Cs Third Cumulant about path length.
fourth Cy Fourth Cumulant about path length.
ei E; Change in the effective mean free path of the
photoelectron.

The first column specifies a key word that




path
id
sigma?2
delr
e0
third
fourth

path
id
sigma?2
delr
e0
third
fourth

el

N NDNDNDDNDNDN

157

feff/feff0001.dat

amp=100.000, deg=2.000, nleg=2, r_eff=2.65, Ag-Cl-Ag
debye (temp,tCl1_debye)

rl - reff

eCl1

thirdl

fourthi

feff/feff0002.dat

amp=95.000, deg=2.000, nleg=2, r_eff=2.63, Ag-Cl-Ag
debye (temp,tCl2_debye)

r2 - reff

eCl2

third2

fourth?2

Figure A.1: Part of the feffit.inp file specifying the path paragraph for two shells. Each line
contains a key word, path number and expression. Table A.1 gives a short description of each key

word.
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A.1 Nb Calibrant

Two of the most common constraints used in this thesis are illustrated within the Nb
model. They are the amount of uniform compression and the Debye model. These
change of parameters are listed in Table A.2, and are part of the feffit.inp file
shown in Fig. A.2. More discussion on these constraints can be found in Sec. 4.3.

Table A.2: Change of parameters for Nb calibrant.

‘ original parameter and shells expression final parameter
AR;: i=1,2 AR; = alpha- reff alpha
or:  i=1,2 o? = Debye(Temp,fpebye)  Obebye
A.2 RDbCI

The model for RbCl evolved through several stages as discussed in Sec. 5.3. The first
stage was to fit the data using a simple model similar to the one shown in the previous
section for Nb. The second stage was to determine linear pressure dependencies of o2
and C5. The final stage was to incorporate these linear pressure dependencies into
the model for a mixture of both of the pure phases. The next two subsections outlines
the model for the second and final stages.

A.2.1 B1-Phase and B2-Phase

The linear pressure dependencies are determined using this model. The model fits
several data sets at different pressures to determine a slope and intercept value for
a line which gives the parameters value at each corresponding pressure. For the Bl-
phase, three shells were included each with its own value for ¢2. T found that the
pressure dependence of o? depends approximately linearly on pressure and that the
slope of the relationship is approximately the same for each shell. The 4 parameters:
sig_slope, sig_int1, sig_int2 and sig_int3, therefore, determines o? for each of the three
shells for each of the 4 data sets each corresponding to a different pressure, i.e. I have
reduced 12 parameters to 4. Sig_slope refers to the slope of the line connecting the

value for o2 to the pressure, p, and sig_int1 refers to the intercept of this line for the
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%==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==
set s02 0.82

guess  e01 0.88
guess  e02 0.88
guess  alpha -0.0045

guess  tl_debye 353.979767
%==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==

path 1 p_1/feff0001.dat

id 1 1st path

s02 1 s02

sigma2 1 debye (Temp, t1_debye)
delr 1 alpha * reff

e0 1 e01

path 2 p_1/feff0002.dat

id 2 2nd path

s02 2 s02

sigma2 2 debye (Temp,t1_debye)
delr 2 alpha * reff

el 2 e02

Figure A.2: Part of the feffit.inp file for Nb specifying two constraints. T1_debye determines o>

for both the first and second shell, and alpha determines the change in bond length for both shells.
The parameter reff is a special key word that tells FEFFIT to look up the reference length for the
specified path in the feffnnnn.dat file. Debye(Temp,t1_debye) is a special function that takes two
parameters the temperature followed by t1_debye.
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first shell. These change of parameters are listed in Table A.3 and are part of the
feffit.inp file shown in Fig. A.3.

Table A.3: Change of parameters for the Bl-phase of RbCl. The number of original parameters is
multiplied by the number of data sets taken at different pressures. The constants A, B and C are
determined from the known compressibility of RbCl (see Sec. 5.4.1).

‘ original parameter and shells expression final parameter ‘
AR;: i=1,2,3 AR; = alpha- reff p for each data
alpha = A + B-p + C-p?
o? i=1,2,3 0? = Debye(Temp,fpebye) sig_slope, sig_int1,
Opebye = sig-int; + sigslope-p sig_int2, sig_int3
Ct . 1=3 Ct = C3.int1 + C3_slope-p C3_slope, C3_intl

A.2.2 Mizture of B1- and B2-Phases

The last stage is to use the slope and intercept values determined in the previous
subsection to model the data as a mixture of both phases using a minimum of unde-
termined parameters. Table A.4 illustrates that the single parameter, the pressure,
determines AR;, 02 and C%. The feffit.inp file is shown in several sections. The
first section, Fig. A.4, shows the Bl-phase parameters that were determined in the
previous section and the expression for 02 and Cs in terms of the pressure. The next
section, Fig. A.5, shows the same expressions for the B2-phase and also lists the pa-
rameters determined by the fit indicated by the guess key word. The last two sections
of the feffit.inp file, Figs. A.6 and A.7, lists the paths for the B1- and B2-phase,

respectively.

A.3 AgCl and AgBr

The AgCl and AgBr models are the same, so only the AgCl feffit.inp are discussed
in this section. The Bl-phase of AgCl was modeled in a similar manor to the Nb
calibrant discussed in Sec. A.1. The KOH-type and TlI-type phases were modeled in
terms of the crystallographic parameters for each of these phases and are discussed

in the next two subsections.
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Table A.4: Change of parameters for mixture of phases for RbCl. The pressure determines the
amount of compression, o7 and C3. The energy shift for each path is related to an overall shift plus
a constant; which was determined from the average value results of the previous model.

‘ original parameter and shells expression final parameter ‘
AR;: 1=1,2,3 AR; = alpha- reff p for each data
alpha = A + B-p + C-p?
o2 i=1,2,3 o7 = Debye(Temp,fpenye )
Opebye = sig-int; + sig_slope-p
ci: =3 C: = C3.int1 + C3_slope-p
AE;, i=1,2,3 AE; = AEy + constant; AE,

A.3.1 KOH-Type Phase

Fig. A.8 shows part of the feffit.inp file, including the parameters needed to specify
only two of the 40 paths used in the fit, for the KOH-type phase of AgCl. This piece
illustrates how the unit-cell dimensions and position of the atoms within the unit cell
are parameterized in terms of the basic XAFS parameter for the path length. The
guess values represent those that are varied in the fit to the data. In this example
the unit cell dimensions and the four atomic positions are determined by the fit to

the data. A summary of the change of parameters is shown in Table A.5.

A.3.2 TII-Type Phase

I have broken the feffit.inp file for the Tll-type phase of AgCl into the following
sections: I) Fig. A.9: the values determined by the fit to the data are denoted by the
guess key word. The other known values for the atomic positions within the unit cell
are denoted by the set key word. II) Fig. A.10: lists the expressions used to calculate
the change in the atomic positions relative the a central Ag atom and the path lengths
from these parameters and the unit cell dimensions. III) Fig. A.11: lists only nine of
the 23 paths used in the fit. Table A.6 lists the change in parameters.
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Figure A.3: Part of the feffit.inp file for B1-phase of RbCl specifying linear pressure dependencies
of 02 and Cs as well as determining the pressure from the compression alpha. The path number 0
is special and means the parameterization for the key words listed apply to all paths that follow.
The subscript _4 indicates that these parameters apply specifically to the data taken at the fourth
pressure.



%

#constant values for each pressure

set sig_mem 0.0029

set s02 0.971198

set e2 -0.43 #relative energy shifts
set e3 -2.82

#determine the slope and intercept for debye temp and third cumulant
guess debye_int1_bl 230.071320

guess debye_int3_b1l 263.142273

guess deybe_int2_b1l 162.905746

guess debye_slope_bl 10.669373

guess c3_intl_bl 0.004806

guess c3_slope_bl -0.002332

#variables for each pressure this is an example for the forth data set

set el 4 1.123877

guess gpa_04 0.539625

set tdebyel_4 debye_intl_bl + debye_slope_bl*gpa_04
set tdebye2_4 deybe_int2_bl + debye_slope_bl*gpa_04
set tdebye3_4 debye_int3_bl + debye_slope_bl*gpa_04
set third3_4 c3_intl_bl +c3_slope_blxgpa_04

! Alphal coefficients that relate compression and GPa
# for the Bl-phase

set al_A1l -.06946

set al_A2 .00865

set alphal_4 (al_A1* gpa_04 + al_A2 * gpa_04"2)/3.295
set alpha_4  ((3.295%(1+alphal_4))/(3.275)) - 1

% insert sets and guesses here
% +==4==+==t==tm=t==d==+ =
s02 0 s02

delr 0 alpha_4 * reff

path 1 p2/£ef£f0001.dat

id 1 amp=100.000, deg=6.000, nleg=2, r_eff=3.2950
sigma2 1 debye (293, tdebyel_4) + sig_mcm

el 1 el 4

path 2 p2/feff0002.dat

id 2 amp=77.914, deg=12.000, nleg=2, r_eff=4.6598
sigma2 2 debye(293,tdebye2_4) + sig_mcm

e0 2 e2 + el 4

path 4 p2/£ef£0005.dat

id 4 amp=23.510, deg=8.000, nleg=2, r_eff=5.7071
sigma2 4 debye(293,tdebye3_4) + sig_mcm

third 4 third3_4

el 4 e3 + el_4

163
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#Values for the Bl phase

set e2_bl -0.43 #relative change for energy shifts

set e3_bl -2.82

set debye_intl_bl 230.199677 #intercept values debye temp
set debye_int3_bl 263.130249

set debye_int2_bl 162.933090

set debye_slope_bl 10.019114 #slope for debye temp

set c3_int3_bl 0.004812 #intercept for third cumulant
set c3_slope_bl -0.002350 #slope for third cumulant

#linear expressions used to determine debye temp

set tdebyel_bl debye_intl_bl + debye_slope_bl*gpa_bl
set tdebye2_bl debye_int2_bl + debye_slope_bl*gpa_bl
set tdebye3_bl debye_int3_bl + debye_slope_bl*gpa_bl
set third3_b1l c3_int3_bl + c3_slope_bl*gpa_bl

# Alphal coefficients that relate compression and GPa
# for the Bl-phase

set al_b1l -.06946

set a2_b1 .00865

set r_bl (al_blx gpa_bl + a2_bl*gpa_b172)/3.295
set alpha_bl ((3.295*%(1+r_b1))/(3.26)) - 1

%==+==+==+==+==+=:+==+==+==+==+==+==+=:+==+==+==+==+==+==+==+==+==+==

Figure A.4: Part of the feffit.inp file for mixture of phases of RbCl listing the parameters and
expressions part for the Bl-phase of the input file.
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% +==+==+=md=mimsmdmmdmsdssdssdosdosdosdosd o= ss b= hes b s ==
set sig_mem  0.0029 #5et values independent of phase
set s02 0.971843

#Values for the B2-phase

set e2_b2 1.01 #relative change for energy shifts

set e3_b2 -1.23

set e4_b2 -2.92

set debye_int1_b2 227.040344 #intercept values for debye temp
set debye_int2_b2 156.190125

set debye_int4_b2 168.260941

set debye_slope_b2 27.606367 #slope for debye temp

set c3_intl_b2 0.002127 #intercept for third cumulant
set c3_int4_b2 0.005194

set c3_slope_b2 -0.001609 #slope for third cumulant

#linear expressions used to determine debye temperature

set tdebyel_b2 debye_intl_b2 + debye_slope_b2*gpa_b2
set tdebye2_b2 debye_int2_b2 + debye_slope_b2*gpa_b2
set tdebye3_b2 tdebye2_b2

set tdebye4_b2 debye_int4_b2 + debye_slope_b2*gpa_b2
set thirdl_b2 c3_int1_b2 + c3_slope_b2*gpa_b2

set third4_b2 c3_int4_b2 + c3_slope_b2*gpa_b2

# Alphal coefficients that relate compression and GPa
# GOOD for 0>P<4.5 GPa for B2-phase

set AQ_b2 1.000535

set A1_b2 -.02789429

set A2_b2 0.005917881

set A3_b2 -.0005624852

set r_r0_b2 AO_b2 + Al_b2*gpa_b2 + A2_b2*gpa_b2"2 + A3_b2*gpa_b2"3
set alpha_b2 (r_r0_b2%(3.409/3.36)) - 1

#parameters to be determined by the fit!

set el_b2 0.559404 #energy shift for b2 phase
guess el bl 1.144618 #energy shift for bl phase
guess gpa_bl -0.055727 #pressure

guess X 1.033978 #amount of Bl phase

set gpa_b2 gpa_bl

set x_b2 1 - abs(x) #amount of B2-phase

set x_bl abs(x) #amount must be positive

%

Figure A.5: Part of the feffit.inp file for mixture of phases of RbCl listing the parameters and
expressions part for the B2-phase of the input file.
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path 5 b1_3.26/feff0001.dat

id 5 amp=100.000, deg=6.000, nleg=2, r_eff=3.2950
s02 5 s02 *x_bl

delr 5 alpha_bl * reff

sigma2 5 debye (293,tdebyel_bl) + sig_mcm

el 5 el_bl

path 6 b1_3.26/feff0002.dat

id 6 amp=77.914, deg=12.000, nleg=2, r_eff=4.6598
s02 6 s02 *x_bl

delr 6 alpha_bl * reff

sigma2 6 debye (293,tdebye2_bl) + sig_mcm

el 6 e2_bl + el_ bl

path 7 b1_3.26/feff0005.dat

id 7 amp=23.510, deg=8.000, nleg=2, r_eff=5.7071
s02 7 s02 xx_bl

delr 7 alpha_bl * reff

sigma2 7 debye (293,tdebye3_bl) + sig_mcm

third 7 third3_b1

el 7 e3_bl + el bl

path 8 b1_3.26/feff0009.dat

id 8 amp=23.510, deg=8.000, nleg=2, r_eff=5.8081
s02 8 s02 *x_bl

delr 8 alpha_bl * reff

sigma2 8 debye (293,tdebyel_bl) + sig_mcm

el 8 el_bil

Figure A.6: Part of the feffit.inp file for mixture of phases of RbCl listing the paths for the
Bl-phase of the input file.
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%==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==

path
id
delr
s02
sigma?2
el
third

path
id

s02
delr
sigma?2
e0

path
id

s02
delr
sigma?2
el

path
id

s02
delr
sigma?2
e0
third
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b2_3.36/feff0001.dat

amp=100.000, deg=8.000, nleg=2, r_eff=3.1004 Rb-Cl-Rb
alpha_b2*reff

s02 *x_b2

debye (293,tdebyel_b2) + sig_mcm

el_b2

thirdl_b2

b2_3.36/feff0002.dat

amp=53.116, deg=6.000, nleg=2, r_eff=3.5800 Rb-Rb-Rb
s02 *xx_b2

alpha_b2*reff

debye (293,tdebye2_b2) + sig_mcm

e2_b2+el_b2

b2_3.36/feff0004.dat

amp=40.304, deg=12.000, nleg=2, r_eff=5.0629 Rb-Rb-Rb
802 *x_b2

alpha_b2*reff

debye (293,tdebye3_b2) + sig_mcm

e3_b2+el_b2

b2_3.36/feff0007.dat

amp=23.758, deg=48.000, nleg=2, r_eff=5.6318 Rb-Cl-Rb
02 *x_b2

alpha_b2*reff

debye (293,tdebye4_b2) + sig_mcm

ed4_b2+el_b2

third4_b2

Figure A.7: Part of the feffit.inp file for mixture of phases of RbCI listing the paths for the
B2-phase of the input file.



168

Table A.5: Change of parameters for the KOH-type phase of AgCl. The crystallographic parameters
include the unit cell dimensions: a, b, ¢ and 8 and the position of the atoms within the unit cell
XAg, YAgs ZAg»> Xcl, yc1 and zc) determine the length of each path. Several paths were found to have
approximately the same Opepye 50 that only 6 were needed to determined all o7 and only 4 energy
shifts were needed.

‘ original parameter and shells expression final parameter ‘
AR;: 1=11%o040 AR; = 1; - reff a, b, c, 3
r; = sqri(((xag — Xa1) - a)®  Xag, Xal
+((yag —ya) - b)? YAg, Ycu
+((2ag — 2za1) - ©)?) ZAg; ZCI
o?: 1 =11t040 o7 = Debye(Temp,Opebye)  Inebye;
total of 6
AE; i1=1to03 same energy shift AE,
for first 4 Cl shells
AE; i=4%040 another energy shift AE,
for all other Cl shells
AE; 1=4to6 same energy shift AE;
for first 2 Ag shells
AE; 1 =T1t040 another energy shift AE,
for all other Ag shells
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Table A.6: Change of parameters for the TlI-type phase of AgCl. The crystallographic parameters
include the unit cell dimensions: a, b, ¢ and the unknown position of the atoms within the unit cell
yag and yc1 determine the length of each path. Several paths were found to have approximately the
same Bpebye 50 that only 4 were needed to determined all 07 and only 4 energy shifts were needed.

‘ original parameter and shells expression

final parameter

AE;
AE;
AE;

AF,

ARZ :

=1 to 40
1t =1 to 23
t=1t03
1 =4 to 23
t=41t08
1= 8 to 23

AR; = 1; - reff

ri = sqrt(((xag — xc) - @)
+((yag — ye1) - b)?
+((zag — 7a1) - ©)?)

o2 = Debye(Temp,0pebye)

same energy shift

for first 4 Cl shells
another energy shift
for all other Cl shells
same energy shift

for first 2 Ag shells
another energy shift
for all other Ag shells

a, b, c
Yag, YC1

eDebyei
total of 4
AE;

AE,
AE;

AEy
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#unit cell dimensions

guess a = 3.444568
guess b = 3.988621
guess ¢ = 5.412174
guess beta = 0.164238
set asb = axsin(beta)
set acb = axcos(beta)

#atomic positions for two Ag and two Cl atoms within unit cell
guess  Agxl = 0.155904

set Agyl = 0.2500

guess  Agzl = 0.199932

set Agx2 = abs(1-Agxl)
set Agy2 = Agyl + .5

set Agz2 = abs(1-Agzl)
guess Clx3 = 0.686180

set Cly3 = 0.7500

guess Clz3 = 0.278414

set Clx4 = abs(1-Clx3)
set Cly4 = Cly3 - .5

set Clz4 = abs(1-C1z3)
#deterime distance between central Ag atom and all other atoms
set dx3 = abs(Agx1-C1x3)
set dy3 = abs(Agy1-Cly3)
set dz3 = abs(Agz1-Clz3)

#determine distances for paths
set r1 = sqrt((1 -1*dx3)*acb)"2 + (dy3*b)~2

+ (dz3*c+((1 -1*dx3)*asb))"2)
set r2 = sqrt((dx3*acb) "2+(dy3*b) "2+(dz3*c-dx3*asb)~2)

% + p==t==t==+==+==+==+

path 1 feff_22a/feff0001.dat

id 1 amp=100.000, deg=2.000, nleg=2, r_eff=2.6505, Ag-Cl-Ag
sigma2 1 debye(temp,tCli_debye)

delr 1 rl - reff

e0 1 eCl1

path 2 feff_22a/feff0002.dat

id 2 amp=95.553, deg=2.000, nleg=2, r_eff=2.6891, Ag-Cl-Ag
sigma2 2 debye (temp,tCl1i_debye)

delr 2 r2 - reff

e0 2 eCl1

Figure A.8: Part of the feffit.inp file for KOH-type phase of AgCl.



set
set
guess
guess
guess
guess
guess
guess
guess
set
set
set
guess
guess
guess
guess
set
set
guess
set
set
set
set
set
set
set
set
set
set
set
set
guess
set
set
set
set
set
set
set
set
set
set

502

temp 150

tagl_debye 183.193771 #debye temperatures
tag2_debye 122.069031

tcll_debye 522.914673

tcl_debye 239.382584

a 3.3811 #unit cell dimensions
b 9.8448

c 4.0976

beta 0

asb a*sin(beta)

acb axcos(beta)

eAgl 1.563378 #energy shifts
elg -3.584770

eCl1 5.178380

eCl 0.999558

Agx1 0.0000

Agy1l min(1,abs(Agyla))

Agyla 0.3990 #undetermined value y for Ag.
Agz1 0.2500

Agx2 0.0000

Agy2 abs(Agyl -.5) + .5

Agz2 0.7500

Agx3 0.5000

Agy3 Agyl + .5

Agz3 0.2500

Agx4 0.5000

Agy4 abs(Agyl - .5)

Agz4 0.7500

C1lx5 0.0000

Cly5 min(1,abs(Clyba))

Clyba 0.1320 #undetermined value y for Cl.
Clz5 0.2500

C1lx6 0.0000

Cly6 abs(Cly5 -.5) + .5

Clz6 0.7500

C1lx7 0.5000

Cly7 Clys5 + .5

Clz7 0.2500

C1x8 0.5000

Clys abs(Cly5 - .5)

C1z8 0.7500

0.91
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Figure A.9: Part of the feffit. inp file for HPPII of AgCl listing the parameters and expressions
part of the input file.
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#determine the difference in the atomic positions

set dx1 abs (Agx1-Agx1)
set dy1l abs(Agyl-Agyl)
set dz1 abs (Agz1-Agz1)
set dx2 abs (Agx1-Agx2)
set dy2 abs (Agyl-Agy2)
set dz2 abs (Agz1-Agz2)
set dx3 abs (Agx1-Agx3)
set dy3 abs (Agyl-Agy3)
set dz3 abs (Agz1-Agz3)
set dx4 abs (Agx1-Agx4)
set dy4 abs (Agyl-Agy4)
set dz4 abs (Agz1-Agz4)
set dx5 abs (Agx1-C1x5)
set dy5 abs (Agy1-Cly5)
set dz5 abs (Agz1-C1z5)
set dx6 abs (Agx1-C1x6)
set dy6 abs(Agy1-Cly6)
set dz6 abs (Agz1-C1z6)
set dax7 abs (Agx1-C1x7)
set dy7 abs(Agy1-Cly7)
set dz7 abs (Agz1-C1z7)
set dx8 abs (Agx1-C1x8)
set dy8 abs (Agy1-Cly8)
set dz8 abs (Agz1-C1z8)

#determine the path lengths from the atomic positions
set r1 = sqrt((dxb5*acb) "2+(dy5*b) "2+(dzb*c+dx5*asb) "2)

set r2 = sqrt((dx8*acb)~2+(dy8+*b) "2+(dz8*c+dx8*asb)~2)

set r3 = sqrt((dx7*acb) "2+(dy7+*b) "2+(dz7*c+dx7*asb)~2)

set r4 = sqrt((dx2*acb) 2+(dy2+b) “2+(dz2*c+dx2*asb)~2)

set r5 = sqrt(((1+dx1)*acb) "2+(dyl*b) ~2+(dzl*c+((1+dx1)*asb))"2)
set r6 = sqrt((dx4*acb) 2+(dy4xb) "2+(dz4*c+dxd*asb)"2)

set r7 = sqrt((dxix*acb) ~2+(dyl1*b) "2+((1+dz1l)*c+dxl*asb)"2)

set r10 = sqrt(((1+dx5)*acb) "2+(dy5*b) “2+(dzb*c+((1+dx5) *asb)) ~2)

set r12 = sqrt(((1+dx2)*acb) "2+(dy2+*b) “2+(dz2*c+((1+dx2) *asb)) ~2)

set r13 = sqrt((dx5*acb) ~2+(dy5*b) "2+ ((1+dz5) *c+dxb*asb) "2)

set r14 = sqrt((dx7*acb) ~"2+(dy7+*b) "2+ ((1+dz7)*c+dx7*asb) "2)

set r15 = sqrt((dx6*acb) 2+(dy6*b) ~2+(dz6*c+dx6*asb) ~2)

set r17 = sqrt((dx3*acb) "2+(dy3*b) ~2+(dz3*c+dx3*asb) ~2)

set r21 = sqrt(((1+dx1)*acb) ~2+(dyl*b) "2+ ((1+dz1)*c+((1+dx1)*asb))~2)
set r23a = sqrt(((1+dx1)*acb) ~"2+(dyl1*b) "2+ ((1+dz1)*c+((1+dx1)*asb))"2)
set r23b = sqrt((dx8+*acb) ~2+(dy8*b) “2+(dz8+*c+dx8*asb) ~2)

set r23c = sqrt((dx8*acb)~2+(dy8*b) ~2+(dz8*c+dx8*asb) ~2)

set r23 = .5 * (r23a + r23b + r23c)

set r25a = sqrt((dx3+*acb)~2+(dy3*b) “2+(dz3*c+dx3*asb) "2)

set r26b = sqrt((dx7*acb) ~2+(dy7*b) ~2+(dz7*c+dx7*asb) ~2)

set r25c = sqrt((dx5*acb) ~"2+(dy5*b) “2+(dz5*c+dxb*asb) "2)

set r25 = .5 * (r2ba + r256b + r2bc)

Figure A.10: Part of the feffit.inp file for HPPII of AgCl listing the parameters and expressions
for determining the path lengths in terms of the unit cell dimensions.
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delr
el

path
id
sigma2
delr
e0

path
id
sigma2
delr
e0

path
id
sigma2
delr
e0

path

sigma2
delr
e0

path

sigma2
delr
el

path
id
sigma2
delr
e0
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feff_29/feff0001.dat

amp=100.000, deg=1.000, nleg=2, r_eff=2.6286

debye(temp,tCll_debye)
rl - reff
eCl1

feff_29/feff0002.dat

amp=100.000, deg=4.000, nleg=2, r_eff=2.6737

debye (temp,tCl1l_debye)
r2 - reff
eCl1

feff_29/feff0003.dat
amp=40.882, deg=2.000, nleg=2,
debye(temp,tCl1l_debye)

r3 - reff

eCl1

feff_29/feff0004.dat
amp=52.752, deg=2.000, nleg=2,
debye (temp,tAgl_debye)

r4 - reff

eAgl

feff_29/feff0005.dat
amp=32.864, deg=2.000, nleg=2,
debye (temp,tAg2_debye)

r5 - reff

eAg

feff_29/feff0006.dat
amp=41.237, deg=4.000, nleg=2,
debye (temp,tAg2_debye)

r6 - reff

eAg

feff_29/feff0007.dat
amp=18.542, deg=2.000, nleg=2,
debye (temp,tAg2_debye)

r7 - reff

eAg

feff_29/feff0010.dat
amp=10.474, deg=2.000, nleg=2,
debye (temp,tCl_debye)

r1i0 - reff

eCl

r_eff=2.8495

r_eff=2.8552

r_eff=3.3811

r_eff=3.9576

r_eff=4.0976

r_eff=4.2827

-Ag-Cl-Ag

-Ag-Cl-Ag

-Ag-Cl-Ag

-Ag-Ag-Ag

-Ag-Ag-Ag

-Ag-Ag-Ag

-Ag-Ag-Ag

-Ag-Cl-Ag
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Figure A.11: Part of the feffit.inp file for HPPII of AgCl listing the first 8 paths of the input file.
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